NSWC MP 82-572

HIGH ALTITUDE AERODYNAMIC TESTS WITH SIMULATED HEAT-SHIELD OUTGASSING

BY C. FISCINA R. VOISINET E. HEDLUND M. ROBERTS
STRATEGIC SYSTEMS DEPARTMENT

1 DECEMBER 1982

Approved for public release, distribution unlimited.

NAVAL SURFACE WEAPONS CENTER

Dahlgren, Virginia 22448 • Silver Spring, Maryland 20910

DIE FILE COI

83 08 31 01

SECURITY CLASSIFICATION OF THIS PAGE When Date Entered!

REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
TREPORT NUMBER 2. GOVT ACCESSION N	OL 3 RECIPIENT'S CATALOG NUMBER
NSWC MP 82-572 11-13 x 675	
TITUE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
HIGH ALTITUDE AERODYNAMIC TESTS WITH SIMULATED	Final Report
HEATSHIELD OUTGASSING	January 1982 - October 1982
	5. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)
CHARLES FISCINA, ROBERT L. P. VOISINET,	
ERIC R. HEDLUND, MARK M. ROBERTS	
Naval Surface Weapons Center (Code K24)	10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS
White Oak	11221N; J0094-SB
Silver Spring, MD 20910	2K25BB
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
	1 December 1982
	13. NUMBER OF PAGES
	144
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCL ACCITIED
	UNCLASSIFIED
	15. DECLASSIFICATION DOWNGRADING SCHEDULE
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different for	rom Report)
8. SUPPLEMENTARY NOTES	
9. KEY WORDS (Continue on reverse side if necessary and identify by block number	or)
Heatshield outgassing	
High altitude simulation	
Side force generation	
Asymmetric outgassing	
D. ABSTRACT (Continue on reverse side if necessary and identify by block number	·)
This report presents the results from the High Al conducted in the NSWC Hypervelocity Wind Tunnel a the test were to provide static force and moment heat transfer distributions on typical reentry coboundary layer outgassing. The results presented	t Mach 14. The objectives of data as well as pressure and onfigurations with asymmetric

and moment, yaw force and moment, surface pressures and surface heat transfer rate on both 7 degree and 9 degree blunt cone models. These models incor-

porated a circumferentially asymmetric outgassing distribution.

BLANK PAGES IN THIS DOCUMENT WERE NOT FILMED

FOREWORD

This report presents the results from the High Altitude Side Force Test conducted in the NSWC Hypervelocity Wind Tunnel at Mach 14. The objectives of the test were to provide static force and moment data as well as pressure and heat transfer distributions on typical reentry configurations with asymmetric boundary layer outgassing. This data is to be used as a data base to aid in the development and validation of new aerodynamic computer models.

The results presented herein include normal force, pitching moment, yaw force, yaw moment, surface pressures and surface heat transfer rate on both 7-degree and 9-degree blunt cone models. These models incorporated a circumferentially asymmetric outgassing distribution.

Approved by:

A. M. MORRISON, Acting Head Weapon Dynamics Division

Distratus

Available

NSWC MP 82-572

CONTENTS

Chapter		Page
1	INTRODUCTION	1
2	MODEL DESIGN	5 7 7 8 8
3	EXPERIMENTAL APPARATUS	9 9 10 10
4	TESTING	13 13 14 16
5	SUMMARY	19
REFER	RENCES	93
NOMEN	NCLATURE	95
Appendix	<u>(</u>	
Α	TABULAR LISTING OF TEST DATA	A-1

ILLUSTRATIONS

<u>Figure</u>		Page
1 2 3 4 5 6 7 8	SIDE FORCE AND MOMENT DEVELOPMENT MACH 18 CAMPHOR MODEL PROOF-OF-PRINCIPLE EXPERIMENTAL RESULTS SCHEMATIC OF BLOWING MODEL DESIGN 3M MATERIAL CHARACTERIZATION SETUP CALIBRATION CURVES FOR 3M DISKS RADIUS OF CURVATURE EFFECT UNIFORM DISTRIBUTION SHELL DESIGN (3M) REQUESTED DISTRIBUTION - TYPE 3	20 21 22 23 24 25 26 27 28
10 11 12 13 14 15	TYPE 3 DESIGN	29 30 31 32 33 34 35
17 18 19 20 21 22	PROBE SETUP	36 37 38 39 40 41
23 24A 24B 24C 24D 24E 25A	UNIFORM MODEL - MEASURED BLOWING RATES (mTOT = 1.4 SCFM)	42 43 44 45 46 47 48
25B 25C 25D 25E 26A 26B 26C 26D	MEASURED BLOWING DISTRIBUTION - TYPE NOMINAL	49 50 51 52 53 54 55 56
26E 27A	MEASURED BLOWING DISTRIBUTION - TYPE 2	

NSWC MP 82-572

ILLUSTRATIONS (CONT.)

<u>Figure</u>		Page
27B 27D 27E 290 313333333333345 4123445 447 449 515234	MEASURED BLOWING DISTRIBUTION - TYPE 4 CALIBRATION SETUP CALIBRATION OF TYPICAL TRANSDUCER REPEATABILITY OF CALIBRATION EXTRAPOLATED CALIBRATION CURVE COMPARISON OF EXTRAPOLATED TO ACTUAL CALIBRATION SCHEMATIC OF GARDON GAGE INSTALLATION SCHEMATIC OF GARDON GAGE CALIBRATION SETUP FORCE BALANCE NITROGEN SUPPLY SYSTEM TIMING FOR CHANGING MASS FLOW RATES INSTRUMENTATION LOCATIONS PRESSURE VS S/RN INDUCED PRESSURE VS AXIAL STATION ST/ST ₀ VS S/RN - UNIFORM DISTRIBUTION COMPARISON OF EXPERIMENT TO THEORY (SYMMETRIC BLOWING) COMPARISON OF EXPERIMENT TO THEORY (SYMMETRIC BLOWING) NFC VS \alpha - 70 CONE XCD/\(\beta\) VS \alpha - 90 CONE XCD/\(\beta\) VS \alpha - 90 CONE SIDE FORCE COMPARISON SIDE MOMENT COMPARISON SIDE MOMENT COMPARISON STORM OF EXPERIMENT TO THEORY (ASYMMETRIC BLOWING) NTOUCED PRESSURE VARIATION ST/ST ₀ VS PHI - TYPE 4 COMPARISON OF EXPERIMENT TO THEORY (ASYMMETRIC BLOWING) TABLES	59 60 61 62 63 64 65 66 67 71 72 73 74 75 77 78 81 82 83 84 85 88 89
Table		Page
TUDIC		
1 2	TEST MATRIX	90 91

INTRODUCTION

Understanding, modeling and predicting the accuracy of high performance reentry systems have been the goals of a number of recent programs throughout the strategic community. One area which has been identified as a result of such studies is the ability to predict with confidence, the high angle-of-attack performance of vehicles reentering the earth's atmosphere in the altitude regime between 400,000 and 100,000 feet. The earliest investigators applied the method of Newton¹ in order to predict the aerodynamics of meteorites and man-made vehicles as they passed through the high altitude regime. The requirement for increased accuracy in predicting high altitude performance led to the development of more complex techniques. 2,3,4 Investigators also noticed anomalous aerodynamic effects in ground and flight experiments. 5,6 The referenced flight test experience involved two tests of the English Black Knight Reentry Vehicle. These were the RVs of BK09 and BK18. Both vehicles were 12½ half-angle blunted cones with 15.4-inch diameter bases and 2-inch radius noses and nominal hypersonic static margins of 1.5 inches. The heatshield was composed of phenolic resin reinforced with asbestos flock. RV-BK09 was also painted with Araldite to prevent outgassing affecting a sensitive pressure gage used to initiate the reentry boost motor. RV-BK09, flown in 1960, reentered at a speed of 15,000 fPS, experienced a dynamic instability at 140,000 feet which grew until the vehicle became dynamically unstable and subsequently broke up at 70,000 feet. reentry vehicle also experienced windward meridian temperatures that would cause

¹Zahm, A. F., "Superaerodynamics," <u>Journal of the Franklin Institute</u>, Vol. 217, 1934, pp. 153-166.

²Tsien, H. S., "Superaerodynamics, Mechanics of Rarefied Gases," <u>Journal of the Aeronautical Sciences</u>, Vol. 13, 1946, pp. 653-664.

³Adams, M. C., and Probstein, R. F., "On the Validity of Continuum Theory for Satelite and Hypersonic Flight Problems at High Altitudes," <u>Jet Propulsion</u>, Feb 1958, pp. 86-89.

⁴Tan, H. S., "Nose Drag in Free-Molecular Flow and Its Minimization," <u>Journal</u> of the Aerospace Sciences, Jun 1959, pp. 360-365.

⁵Ericsson, L. E., "Effect of Nose Bluntness on the Hypersonic Unsteady Aerodynamics of an Ablating Reentry Body," <u>J. Spacecraft and Rockets</u>, Vol. 4, No. 6, Jun 1967, pp. 811-813.

Waterfall, A. P., "Effect of Ablation on the Dynamics of Spinning Reentry Vehicles," J. Spacecraft and Rockets, Vol. 6, No. 9, Sep 1969, pp. 1038-1044.

the Araldite paint to char and inject mass into the vehicle boundary layer at an altitude of 140,000 feet. The RV-BK18 was flown to check some of the problems raised by RV-BK09. It was instrumented extensively and excellent quality data was obtained. The BK18 was not painted with Araldite. No dynamic effects were exhibited in the region where BK09 experienced dynamic instabilities. At about 85,000 feet vehicle dynamics caused a divergence in the angle-of-attack. The altitude where ablation of the phenolic afterbody heatshield was expected is at 85,000 feet. Six-degree-of-freedom trajectory simulation of BK18 and BK09 was attempted post flight. Agreement with flight-observed performance could be obtained in the regions of observed dynamic instability only when a Magnus-like term was included in the equations of motion. The size of the required Magnus term was much too large to be physically explained as a classical Magnus phenomena. It was, therefore, proposed that the source of the Magnus-like term was an out-of-plane pitching moment associated with the charring or ablation of the Araldite phenolic heatshield.

The injection of mass into the boundary layer of a reentry vehicle traveling at high speed can influence aerodynamic forces by altering both the skin friction and boundary layer displacement induced pressure effects. The combined effects of mass addition, spin and angle of attack can produce a mechanism which can lead to out-of-plane forces and moments as illustrated in Figure 1. The windward side of the reentry vehicle would first experience the temperature and pressure necessary to induce mass addition. Once the reentry vehicle heatshield experienced these conditions, a finite period of time would be required for the material to respond and eject mass. In the case of a spinning reentry vehicle this material lag would cause the rate of mass addition to be higher on one side of the vehicle than the other, in that, as an outgassing ray moves to the lee ray, the temperature and pressure decrease, as does the rate and magnitude of mass addition. The differential mass addition rate and magnitude causes the side with the higher mass addition to have a thicker boundary layer. The boundary layer asymmetry leads to an induced pressure force and moment. The resultant force acts in a direction opposite to that of a classical Magnus force.

In general, the aerodynamic shear associated with a thin boundary layer is larger than associated with a thicker boundary layer. A shear couple, therefore, also results due to the longitudinal shear differential associated with the high and low mass addition sides of the vehicle. Radial shear differential would also create a couple opposing roll.

Early tests of ablating and nonablating spherically-blunted cone models were conducted at Mach 18 in the Naval Surface Weapons Center Hypervelocity Research Tunnel. Details of the configuration tested are shown in Figure 2. Camphor was used as an ablating material and model shells were fabricated with a 0.32-cm layer of camphor covering 86.9 percent of the body length. An aluminum shell was fabricated for the nonablating model. A steel nosetip was

Ragsdale, W. C., and Horanoff, E. V., "Investigation of a Side Force Due to Ablation," J. Spacecraft and Rockets, Vol. 16, No. 9, Sep 1978, pp. 1010-1011.

used for the ablating models as well as the nonablating model to avoid shape change effects in the region of highest aerodynamic heating. Static force measurements were made with a four-component strain gage force balance which was designed for the test program and incorporated a mechanism for spinning the models.

The test procedure was to spin the model to the desired rate while bringing the wind tunnel supply pressure and temperature to the run condition. this start-up period, the model was kept in a retracted position in the test cell of the open-jet wind tunnel. When the run conditions were achieved, the model was injected into the tunnel flow and force data were recorded, while the angle of attack was swept at a rate of roughly 1.5 deg/s up to a maximum value which depended on the tunnel supply pressure. During most of the ablating model tests, the sweep was halted for a few seconds at 10 and 25 deg angle of attack to look for possible transient effects. After completing the data sweep, it was necessary to return the model to a small angle of attack before retracting it from the tunnel flow. As a result, the amount of camphor ablated during the data sweep could not be determined. Usually, all the camphor was ablated during the wind tunnel run and shutdown process. Observation via a television monitor indicated that the camphor-coated portion of the models remained fully coated throughout the data sweep. Models examined after two aborted runs indicated that roughly 20-30 percent of the camphor could have ablated prior to the data sweep as a result of exposure to the low-pressure test cell environment.

The side force data obtained from the wind tunnel experiments are given in Figure 3, as plots of yaw force coefficient Cy vs. angle of attack. Data taken during the pauses in the angle-of-attack sweeps at 10 and 25 deg agreed very well with the data taken during the continuous pitch sweeps, thereby verifying the sweeping technique. Comparisons made among data from ablating and nonablating model experiments clearly indicated a significant side force due to ablation. The ablating model data also indicated that the side force is a strong function of the angle-of-attack,nonlinear up to about 10 deg and linear at higher angles. Data was gathered at spin rates between 1 and 7 rps. For camphor ablation at the test conditions reported here, the side force due to ablation was independent of spin rate at speeds greater than 1-2 rps for angles of attack up to 25 deg.

The shape change effects and the inability to characterize the mass addition parameters of the camphor during the experiment classify these results are qualitative. They do, however, provide a proof-of-principle demonstration of the ablation lag effect.

The purpose of the current test program was to test models with which the heatshield outgassing could be correctly modeled and accurately characterized. In addition to making measurements of static forces and moments; surface pressure and heat transfer distributions would also be obtained.

MODEL DESIGN

Two different nonspinning model bodies were used in this test program. One model body was used for the pressure/heat transfer portion of the test and had provisions for holding the necessary pressure transducers and Gardon gages. The second model body was used for the portion of the test where aerodynamic forces and moments were measured and incorporated an internally mounted strain gage balance. Both models were designed with an internal passageway through which pressurized nitrogen was fed and then used for heatshield outgassing.

Six porous model shells were built which would fit over either of the two model bodies. Two of these had a uniform outgassing distribution, both axially and circumferentially, while the other four shells had asymmetric outgassing distributions. The exact distributions will be discussed later.

Of the two shells with uniform distributions, one was constructed from a sheet of KenDan Varaperf. This is simply a sheet of stainless steel of 0.024-inch thickness with 450 evenly spaced 0.005 inch-diameter holes per inch. The sheet was rolled into a conical shape, thus providing a uniform outgassing distribution when internally pressurized to a valve that ensures that the orifices are choked. The magnitude of this outgassing can be described by the following equation, which defines the flow through a choked orifice:

$$\dot{m} (1 \text{bm/sec}) = \frac{0.532 \text{ Po A}_{\star}}{\sqrt{\text{To}}}$$
 (1)

where:

Po = upstream pressure (psia)

 A_{\star} = orifice area (in²)

To = upstream temperature $({}^{O}R)$.

The second uniform shell and the four with asymmetric outgassing were constructed from 3M Porous Structures Grade 15. This material is supplied in large sheets from which a number of disks were cut, epoxied together and machined to yield a conical shaped shell with a hollow interior. Figure 4 shows a schematic of the structure of a typical porous shell.

⁸Dannenberg, R. E., Weiberg, J. A., and Gambucci, B. J., <u>Perforated Sheets as</u> the Porous Material for a Suction-Flap Application, NACA TN 4038, May 1957.

Instead of a spinning body producing the asymmetric heating, the outgassing distribution was modeled by varying the shell wall thickness both circumferentially and axially. In order to determine what wall thicknesses were required, it was first necessary to characterize the material. This characterization consisted of determining the relationship between outgassing magnitude and pressure drop through the material.

The material characterization was accomplished by mounting a disk of the material in a holder as shown in Figure 5. The sample holder was placed in a vacuum chamber to simulate the lower external pressures which would be experienced in the wind tunnel tests. An air line fed the sample holder through a mass flow meter. In the side of the sample holder was a pressure tap used to measure the internal pressure. By measuring the mass flow into the sample holder at various internal pressures, it was found that the material respons could be described by equation (2)

$$\triangle P^2 = C \left(\frac{\dot{n}}{A}\right)^S t \tag{2}$$

where:

$$\triangle P^2 = (P internal)^2 - (P external)^2$$

$$\frac{\dot{m}}{A}$$
 = mass flow rate per unit area ($^{1bm}/ft^2$ -sec)

t = sample thickness

s = exponent (equal to 1.0)

c = constant.

Figure 6 shows the results of this calibration for samples of two different porosities.

The next step in the material characterization was to account for the curvature of the shell walls in the thickness calculations. Figure 7 is a diagram of a portion of the shell showing that the internal pressure acts over a smaller inside surface area than the external surface area. This effect can be described by equation (3)

$$A_1/A_2 = \frac{(R-t) d0}{R d0} = \frac{(R-t)}{R}.$$
 (3)

From continuity we know:

$$\dot{m}_1 / A_1 = \dot{m}_2 / A_2 \left(\frac{R}{R - t} \right) . \tag{4}$$

Combining equations (4) and (2):

$$P^{2} = C \left(\frac{\dot{m}}{A_{2}} \cdot \frac{R}{R-t}\right)t. \tag{5}$$

For this test program it was desired to calculate wall thicknesses for a given .PT and mass flow rate. This was accomplished by using the following relations:

$$\frac{t}{R-t} = \left(\frac{p^2}{(C)(\frac{m}{A})(R)}\right) = A \tag{6}$$

$$t = \frac{AR}{1+A}. \tag{7}$$

SHELL DESIGNS

The first two model shells were designed to have a uniform outgassing distribution of 0.00115 lbm/ft² -sec. For the Varaperf model shell, equation (1) was applied to calculate the required internal pressure to produce this mass flow rate with sonic conditions in the orifices. For the shell constructed from the 3M material, a more complex procedure was required. First, it was necessary to select a value for ΔP^2 which was high enough so that small variations in external pressure would not affect the mass flow through the shell significantly. Then, using this value of ΔP^2 , the desired mass flow rate and the local radius, the shell could be designed to give a uniform outgassing rate.

Figure 8 shows the resulting design for a ΔP^2 of 30 (psia)². As can be seen, even though a uniform axial distribution is desired, the wall thickness must increase with axial distance to compensate for the increasing radius of the cone as described above by equation (4).

The requested distributions and resulting designs for the asymmetrically outgassing shells are shown in Figures 9through 16. These shells were designated as Type 3, Type Nominal, Type 2 and Type 4. The first three were for sphere-cone shells with a 7° half-angle and 0.22 bluntness ratio (Rn/Rb) and the type 4 shell was a 9° cone with a bluntness ratjo of 0.08.

SHELL CALIBRATION TECHNIQUE

After the model shells were designed and constructed it was necessary to measure the actual outgassing rates to insure an accurate simulation of the required distributions. This task was complicated by the extremely small magnitudes of outgassing that it was necessary to measure (on the order of 10^{-4} $1 \, \text{bm/ft}^2$ -sec).

The technique that was finally used was developed specifically for this test but could be used for any task where measurements of small mass flow rates were required. First, the model shell to be calibrated was placed in a vacuum chamber so that the external pressure could be reduced to values that would be expected in the actual testing. Figure 17 shows a schematic of the calibration setup.

Three probes were designed which would be used to measure the outgassing at specific axial locations on the model surface and a schematic of this probe is shown in Figure 18. One side of a differential pressure transducer was connected to the side of the probe and the other side of the transducer was open

to the vacuum chamber pressure. The top of the probe was connected to a vacuum pump through a calibrated sonic orifice, used as a mass flow measuring device, and a needle valve. By adjusting this needle valve, the pressure inside the probe could be made equal to the test cell pressure as indicated when the output of the differential transducer was zero. Matching these pressures eliminates the need for a seal around the probe because with no pressure differential there is no leakage into or out of the probe and the probe can just rest on the model surface (see Figure 19). The flow rate of the air passing through the area covered by the probe is subsequently determined by measuring the pressure upstream of the calibrated sonic orifice and using equation (1). A calibration coefficient, Cf, was determined for the probe by comparing the mass flow per unit area measured by the probe to the total mass flow into the model divided by the model surface area. This was done at several different values of total mass flow and a calibration curve was developed for the probe system and is shown in Figure 20. A curve fit through this data was used to correct the mass flow measurements from the probes. Therefore, for a given measurement of the upstream orifice pressure, a correction factor is determined and the actual mass flow rate per unit area can be calculated by the following equation:

$$\frac{\dot{m}}{A} \left(\frac{1 \text{ bm}}{\text{ft}^2 - \text{sec}} \right) = \frac{.532(P_0)(A_{\star})}{\sqrt{T_0 \text{ (A probe)}}} \quad \text{Cf.}$$
 (8)

DESIGN VS. ACTUAL DISTRIBUTIONS

Figure 21 illustrates the characterization of the mass flow rates along the 3M model shell designed to have a uniform blowing distribution. The total mass flow into the model was measured by the flow meter as a 0.466 standard cubic feet per minute (SCFM). Dividing by the surface area of the model, this measurement corresponded to a mass flow per unit area of 4.25 x 10^{-3} lbm/ft²-sec. Figure 21 shows the locally measured mass flow rates for three axial stations along four circumferential rays. Figure 22 and 23 show the same type of plot for total mass flows of 0.7 SCFM and 1.4 SCFM, respectively. As can be seen, there is very good agreement between the measurement derived from the probes and that of the mass flow meter. The maximum difference was approximately \pm 10 percent.

CHARACTERIZATIONS OF ASYMMETRIC BLOWING SHELLS

After successfully demonstrating the probe technique on the uniform blowing models, measurements were then taken on the models designed to produce asymmetric blowing distributions. The same probes used for the uniform blowing shells were used here. In addition, a fourth probe was constructed to make measurements at an axial station closer to the nose of the model. The four probes were all designed to fit the 7° cone shells but there was no difficulty in using them to calibrate the one 9° cone shell used here also.

Figures 24 through 27 illustrate the predicted and measured blowing characterizations for the four asymmetric blowing models, respectively. The figures show the high and low blowing rays of each model as well as the circumferential distributions at the four axial stations. There was excellent agreement between the measured rates and the design rates, with an error of no more than \pm 10 percent.

EXPERIMENTAL APPARATUS

PRESSURE INSTRUMENTATION AND CALIBRATION

As was described earlier, one of the major objectives of this test program was to measure the surface pressures on the models under simulated high altitude conditions. Due to this simulation of high altitudes, the surface pressures were expected to be extremely small. Lee-side pressures were expected to be as low as 0.001 psia.

The pressure transducers selected for this test were Microswitch model $130\,$ PC which were solid state, piezoresistive transducers with a 0.625-inch square base and a height of 0.8125 inches. The sensing element is a 0.1-inch square silicon chip with a sensing diaphragm and four piezoresistors. When a pressure is applied, the diaphragm flexes, changing the resistance. This results in an output voltage proportional to the applied pressure. This transducer had a range of 0- $15\,$ psia.

Because the expected pressures were so low and the Microswitch transducers have a much higher rated pressure, a calibration setup was utilized to check the transducers for linearity and repeatability in the low pressure regime, below 0.2 psia. This setup, shown in Figure 28, incorporated a vacuum pump, bell jar and two low pressure standards (a Universal mercury manometer and a McLeod gage).

The pressure range of greatest importance in this test was from 0.001 psi to 0.067 psi. Figure 29 shows the initial linearity check of a random Microswitch transducer versus data acquisition system counts (DARE counts). DARE counts are an artificial measurement of the transducer voltage output. During the calibration, the system was pumped down and measurements were taken. The system was then vented to atmospheric pressure and the procedure was repeated to assure no transducer hysteresis. A more detailed calibration at lower pressures (Figure 30) showed the good repeatability and linearity of this Microswitch transducer.

The Microswitch transducers were also linear over the range 0.901 psi to 0.4 psi (Figure 31). The impact of this fact was two-fold. First, a wide range of pressures could be measured accurately during one test. More importantly, an accurate calibration could be accomplished immediately prior to a wind tunnel run. Traditionally, an in-site calibration of each transducer is performed prior to a run by taking discrete measurements as the wind tunnel is being evacuated. In certain cases, however, the pressure to be measured during a test is lower than the lowest pressure attained during tunnel evacuation. For a low-pressure case, an accurate calibration can be made down to the minimum evacuation pressure and the slope must be extrapolated to the low pressure range

of interest. The extrapolation of the slope of a Microswitch transducer compared very favorably with test measurements (Figure 32).

In this test, the excitation voltage was limited to seven volts during a run. The sensitivity of the transducer with seven volts excitation is 0.0003 psia per DARE count. Standard deviations obtained during calibration were \pm 3 DARE counts (0.001 psia). Therefore, the uncertainty in the measurement of pressures in the 0.001 psia range was high, but higher pressures, as on the windward side of a model, can be measured quite accurately.

HEAT TRANSFER INSTRUMENTATION AND CALIBRATION

Gardon gages were used to measure the heat transfer rates on the model surface in this test. Figure 33 shows a typical Gardon gage and how it is installed in a standard model. For use in the 3M porous models, another copper sleeve was press fit in the model. A wire was then soldered to the extra sleeve to allow for the gage to be grounded.

Figure 34 shows the calibration setup for the Gardon gages. A quartz lamp is placed over the gage at a precise distance. The lamp has been calibrated so that the heat transfer rate is known for that distance above the gage. The output of the gage is amplified and used to generate a sensitivity coefficient for the gage in BTU/ft^2 -sec per m.v.

FORCE AND MOMENT BALANCE

Another of the major objectives of this test program was to measure the side forces developed due to asymmetric heatshield outgassing. Pre-test predictions indicated that these side forces would be extremely small, as small as 0.005 lbs. In order to be able to accurately measure forces of this magnitude, it was necessary to construct a special force balance. Not only would this balance need to be extremely sensitive but an additional requirement was that it be made with a hollow center to allow the nitrogen to be used to simulate the heatshield outgassing to pass through it. Figure 35 shows a diagram of the balance constructed for this test.

The balance was made to measure four components of the aerodynamic loads. These were normal force, pitching moment, side or yaw force and yaw moment. As can be seen, the gage sections were very thin, as the thickness determined the sensitivity of the balance. Additionally, the gages intended to measure the yaw forces and moments were placed on sections that are much thinner than those for the normal forces. This was done since the normal forces were expected to be two orders of magnitude greater than the yaw forces.

In addition, very sensitive semi-conductor gages were used. These gages have approximately 60 times more output than the commonly-used foil gages for the same loads.

NITROGEN SUPPLY SYSTEM

In order to simulate heatshield outgassing, nitrogen gas was fed to the model through the sting and then out through the porous model shell. The gas supply system was not only required to supply a specified mass flow rate, but to supply three different rates to the model during each run. Figure 36 shows a schematic of the system used for this test. Two individually adjustable supply lines were connected to the model through a manifold. Each line could be shut-off separately through a solenoid operated valve.

Prior to a tunnel run, each line would be opened separately and adjusted to a specific mass flow rate. A pressure transducer inside the model shell was used to determine the mass flow rate through the model based on the shell calibrations described earlier.

The solenoid valves were connected to the tunnel sequencer which was programmed to open each valve at a pre-determined time during a tunnel run.

After the tunnel was started, the data system was started. After 2 seconds, the first valve was opened feeding the model with the first mass flow rate. Five seconds later the first valve was closed and the second valve was opened, thus supplying the model with a second, higher blowing rate. Data was recorded for 12.5 seconds, after which the second valve was closed and the tunnel shut down.

This technique was used so that both the blowing and non-blowing data were recorded in one tunnel run for each angle-of-attack. This eliminated the effects of run-to-run differences in tunnel operating conditions.

Figure 37 shows a typical plot of the output of the internal pressure transducer. Not only does it indicate when blowing rates were changed, but it also shows when steady conditions were reached. This information was later used in the data reduction so that only data recorded during steady conditions was examined.

TESTING

TUNNEL CONDITIONS

The Hypervelocity Wind Tunnel (HWT) is a blow-down facility that is designed to generate flows at either Mach 10 or Mach 14. It has a 5-foot diameter test cell which facilitates the use of relatively large models. Traditionally, the tunnel is operated with supply pressures of 3000 psia to 20,000 psia which produces altitude simulations of approximately 50,000 feet. As the purpose of this test was to investigate effects that occur at altitudes above 200,000 feet, the tunnel was adapted to run at much lower supply pressures (100 to 300 psia). This reduction in supply pressure produced conditions equivalent to approximately 200,000 feet.

In general, the tunnel operates by heating and pressurizing a fixed volume of gas, nitrogen, and then blowing this gas down through either a Mach 10 or Mach 14 nozzle. Therefore, in addition to increasing the altitude simulated, the reduction in supply pressure also lengthened the run time of the tunnel from approximately 1 second to about 28 seconds at the 300 psia supply pressure.

For all but one of the runs in the test program, the tunnel was operated with the following conditions:

Supply pressure : 300 psia Supply temperature : 2000 F

Mach number : 13

Dynamic pressure : 0.14 psia
Free-stream velocity : 5500 ft/sec
Re/ft : 120,000
Knudsen number : 0.032
Run time : 28 seconds

The other run was made at the following tunnel conditions:

Supply pressure : 100 psia Supply temperature : 1500 F Mach number : 13

Dynamic pressure : 0.065 psia Free-stream velocity : 4600 ft/sec

Re/ft 90,000 Knudsen number : 0.035

Run time : 15 seconds

The testing was divided into two phases. Phase I consisted of measuring surface pressure and heat transfer rates on the two uniform outgassing model shells. Phase 2 included force and moment measurements as well as pressure and heat transfer measurements on the four asymmetric outgassing shells. Table I shows the test matrix and Table 2 shows the actual blowing rates used in both phases.

PHASE ONE

This phase of the test consisted of six runs on the two shells with uniform outgassing distributions discussed earlier, four runs with the 3M shell and two runs with the Varaperf shell. All six runs here were made with the model at zero angle of attack. Measurements were made of surface pressures at 24 locations around the body. Figure 38 shows the locations of the pressure instrumentation. The models were also instrumented with 8 Gardon gages, 4 on the windward ray and 4 on the leeward ray.

The use of two model shells made of different materials allowed a comparison to be made of the effect that the manner of outgassing has on the resulting induced pressures and heat transfer rates. For the same magnitude of outgassing on each shell, the Varaperf shell was expected to have a higher injection velocity than that of the 3M shell. This higher injection velocity is due to the Varaperf material having individual holes acting as sonic orifices while the 3M material is a porous structure with a large number of micropores.

The secondary objective of this phase of the testing was to evaluate the effectiveness of the pressure and heat transfer instrumentation. To this end, one run was made at a supply pressure of 100 psia to determine if the extremely low valves of pressure and heat transfer expected could be measured accurately. The remaining five runs were conducted at the 300 psia supply pressure conditions. Results from this comparison indicated that measurements could be made at the 100 psia conditions but that better data accuracy could be obtained at the slightly higher supply conditions. As a result, the remainder of the testing, both in phase one and phase two, was conducted at the 300 psia conditions.

Figure 39 shows the results of pressure measurements made before turning on the model blowing. A comparison is made between measurements on the Varaperf and 3M shells and two computer predictions. As can be seen, the data agrees very well with the LMSC code. This is the code currently under development that this data will be used to validate. In addition to the agreement with the code, the data indicates very good repeatability between runs. This result shows that the pressure instrumentation is suitable for making measurements in this high altitude simulation regime.

Figure 40 shows the effect that different outgassing rates have on the pressure distribution along the body. Shown here is the change in surface pressure. P, between the no-blowing and blowing cases for both the Varaperf and 3M shells. The blowing rates listed at the right indicate the blowing magnitude as a percentage of the tunnel freestream mass flow rate. As can be seen at low blowing rates, under l percent, the induced pressure is constant along the length of the body and there seems to be no difference between the two model shells.

As the blowing rates become larger, we see a trend towards a higher induced pressure at the front of the model than that at the rear of the model. This indicates that the blowing has become high enough to begin blowing the boundary layer off at the rear of the body.

In addition, we now see a large difference in induced pressures on the two shells at the same blowing magnitudes, i.e., the 3M shell at 2.8 percent compared to the Varaperf shell at 2.7 percent. The 3M shell, in general, tends to exhibit a much higher induced pressure for the same blowing rates. Much more analysis is required at this time to understand the causes of this difference but it is believed that the difference in injection velocity is a contributing factor.

Figure 41 shows some of the results of the heat transfer measurements made on the two model shells. Plotted is the Stanton number, ST, normalized by the Stanton number without blowing, ST_0 , versus S/RN. As is expected, the heat transfer rates decrease as the blowing rates increase. The condition described earlier of boundary layer blow-off is defined by where the heat transfer rate goes to zero. It can be seen that this occurs at a blowing rate around 1 percent. This agrees well with the results of the induced pressure measurements described earlier.

In the case of the heat transfer rates there again seems to be little difference between the two shell materials at low blowing rates. This is shown by comparing the 3M shell at .58 percent to the Varaperf shell at .68 percent. As can be seen the data for the two shells are almost identical. A comparison at higher blowing rates is impossible since the heat transfer rates go to zero due to boundary layer blow-off.

Figure 42 shows a comparison of the experimental results to several theoretical correlations. 9,10 As can be seen the data correlates very well with the theoretical values given for flow over cones. Some of the scatter in the data can be attributed to the fact that the correlation is based on free-stream properties and does not take into account the variation in conditions over the surface of a cone.

Figure 43 shows a similar correlation, but in this case the model blowing rates are normalized by the properties at the edge of the boundary layer. This then takes into account any variation in flow field properties over the cone surface.

Laganelli, A. L., Foganoli, R. P., and Martillucci, A., <u>The Effects of Mass Transfer and Angle of Attack on Hypersonic Turbulent Boundary Layer Characteristics</u>, AFFDL-TR-75-35, Apr 1975.

Walker, G. K., <u>Turbulent Boundary Layers with Mass Addition</u>, G. E. Document No. TFM-8151-021, Nov 1963.

libby, P. A., "The Homogeneous Boundary Layer at an Axisymmetric Stagnation Point with Large Rates of Injection," J. Aeronautical Sciences, Jan 1962.

In summary, the results from phase one indicated that the instrumentation had adequate sensitivity to make the required measurements. The data also points to a difference in the induced pressures at higher blowing rates between the two shells, while a comparison of heat transfer rates is not possible due to the effect of boundary layer blow-off. Finally, the heat transfer data at low blowing rates correlates very well with theoretical values for both the 3M and Varaperf shells.

PHASE TWO

This phase of the test consisted of 28 runs, 14 dedicated to force and moment measurements and 14 dedicated to measuring surface pressure and heat transfer rates. All the runs made in this phase were with the shells designed to produce an asymmetric outgassing distribution. The runs were made at various angles of attack between 0° and 35°. In all the data to be presented for phase two, the blowing magnitude listed is the maximum rate. This maximum with only a few exceptions was located at a circumferential location, \emptyset , 60° from the windward ray. Two runs were made with the maximum located at a value of \emptyset = -60° from the windward ray.

Figures 44 through 46 show the effect of blowing on the normal force coefficient, pitching moment coefficient and center-of-pressure location, respectively, for the 7 conical models. The normal force and pitching moment coefficients are seen to be only slightly reduced due to the blowing. At higher angles of attack (>10°) there is also only a slight effect on center-of-pressure location (Xcp/l) but at α = 5° there is a very large change in Xcp/l. Since the normal force and pitching moment are both very small at this angle, a very small change in them causes a very large shift in Xcp/l.

A comparison can be made between these parameters for the 7° cone to those for the 9° cone using Figures 47 through 49. Here we see that the changes in normal force and pitching moment coefficients are even smaller than those of the 7° cone. This results, therefore, in a much smaller shift in Xcp/l for the 9° cone. One thing that is evident is that the Xcp/l shift on the 9° cone tends to make the body more stable while on the 7° cone it has a destabilizing effect.

A comparison of the out-of-plane forces and moments on the two cones is shown in Figures 50 and 51. The values for the 7° cone are taken from the shell designated as type "nominal" which corresponds to the blowing distribution used on the 9° cone. From Figure 50 it can be seen that the side force generated for the same blowing magnitude on the 9° cone is, on the average, about one-half that for the 7° cone. Similarly, Figure 51 shows that the side moments are generally higher on the 7° cone also.

This difference in side force on the two bodies is a result of the induced pressure variation shown in Figure 52. Shown here are the circumferential variations of induced pressure measured on the type "nominal" (7°) cone and type 4 (9°) cone at one axial station. It can be seen that the change in pressure on the left side of the 7° cone is larger than the change in pressure on the right side. This difference in induced pressure causes a force to the right. On the 9° cone the changes in pressure on the left side are only slightly larger than those on the right side, resulting in the much smaller side forces seen in the force and moment results described earlier.

Figure 53 shows the results of the heat transfer measurements made during a typical run, in particular, the first station of the type "4" shell at two blowing magnitudes and zero angle of attack. Shown is the Stanton number normalized by the non-blowing Stanton number. Again, as in phase one, the heat transfer rates are reduced due to the blowing. Here the heat transfer distribution varies circumferentially as the blowing rates vary circumferentially, the maximum reduction corresponding to the maximum blowing rate.

Figure 54 shows the heat transfer data for all four asymmetric blowing shells tested. Here the data are plotted against the same correlation described in Reference 11. Again we see very good agreement between the data taken here and the theoretical values.

SUMMARY

The heat transfer data has been correlated very well with known theories for the flow over conical bodies. Inspection of the induced pressure data indicates agreement with the side force and moment data.

As described earlier, one of the objectives of this test program was to provide data with which to validate computer models now under development. Preliminary calculations made with these new computer models have not shown very good agreement with experimental results. This, it is believed, is due to the inability of the computer models to correctly simulate the manner in which the outgassing occurs at the model surface. Much more analysis is required in this area before the computer models can be finalized and this work is now underway.

The successful completion of this test has demonstrated several new capabilities that can be very useful in future testing. One new capability is the ability to simulate very high altitude conditions at a nominal Mach number of 13. With the increasing interest in high altitude aerodynamics, this can become a very valuable tool. Also demonstrated was the ability to accurately simulate the asymmetric outgassing distributions of typical reentry vehicle configurations.

FIGURE 1. SIDE FORCE AND MOMENT DEVELOPMENT

FIGURE 2. MACH 18 CAMPHOR MODEL

FIGURE 3. PROOF-OF-PRINCIPLE EXPERIMENTAL RESULTS

FIGURE 4. SCHEMATIC OF BLOWING MODEL DESIGN

FIGURE 5. 3M MATERIAL CHARACTERIZATION SETUP

FIGURE 6. CALIBRATION CURVES FOR 3M DISKS

FIGURE 7. RADIUS OF CURVATURE EFFECT

FIGURE 8. UNIFORM DISTRIBUTION SHELL DESIGN (3M)

28

FIGURE 12. TYPE NOMINAL DESIGN

FIGURE 13. REQUESTED DISTRIBUTION - TYPE 2

FIGURE 14. TYPE 2 DESIGN

No. 19 Carlotte Control of the Contr

FIGURE 16. TYPE 4 DESIGN

FIGURE 17. PROBE SETUP

FIGURE 18. PROBE CONFIGURATION

FIGURE 19. EFFECT OF PROBE PRESSURE ON MEASUREMENT TECHNIQUE

41

FIGURE 23. UNIFORM MODEL – MEASURED BLOWING RATES (mTOT = 1.4 SCFM)

FIGURE 24A. MEASURED BLOWING DISTRIBUTION - TYPE 3

FIGURE 24B. MEASURED BLOWING DISTRIBUTION - TYPE 3

FIGURE 24C. MEASURED BLOWING DISTRIBUTION - TYPE 3

FIGURE 24D. MEASURED BLOWING DISTRIBUTION - TYPE 3

FIGURE 24E. MEASURED BLOWING DISTRIBUTION - TYPE 3

FIGURE 25A. MEASURED BLOWING DISTRIBUTION -- TYPE NOMINAL

FIGURE 25B. MEASURED BLOWING DISTRIBUTION - TYPE NOMINAL

FIGURE 25C. MEASURED BLOWING RATES - TYPE NOMINAL

FIGURE 25D. MEASURED BLOWING DISTRIBUTION - TYPE NOMINAL

FIGURE 25E. MEASURED BLOWING DISTRIBUTION - TYPE NOMINAL

FIGURE 26A. MEASURED BLOWING DISTRIBUTION - TYPE 2

180⁰

$$S/R_{N} = 5.2$$

$$P_{\infty}U_{\infty} = 0.23 \quad lbm$$

$$ft^{2}-sec$$

270⁰

90°

FIGURE 26B. MEASURED BLOWING DISTRIBUTION - TYPE 2

FIGURE 26C. MEASURED BLOWING DISTRIBUTION - TYPE 2

FIGURE 26D. MEASURED BLOWING DISTRIBUTION - TYPE 2

FIGURE 26E. MEASURED BLOWING DISTRIBUTION - TYPE 2

FIGURE 27A. MEASURED BLOWING DISTRIBUTION - TYPE 4

FIGURE 27B. MEASURED BLOWING DISTRIBUTION - TYPE 4

FIGURE 27C. MEASURED BLOWING DISTRIBUTION - TYPE 4

FIGURE 27D. MEASURED BLOWING DISTRIBUTION - TYPE 4

FIGURE 27E. MEASURED BLOWING DISTRIBUTION - TYPE 4

FIGURE 28. CALIBRATION SETUP

FIGURE 29. CALIBRATION OF TYPICAL TRANSDUCER

FIGURE 30. REPEATABILITY OF CALIBRATION

FIGURE 31. EXTRAPOLATED CALIBRATION CURVE

FIGURE 32. COMPARISON OF EXTRAPOLATED TO ACTUAL CALIBRATION

FIGURE 33. SCHEMATIC OF GARDON GAGE INSTALLATION

FIGURE 34. SCHEMATIC OF GARDON GAGE CALIBRATION SETUP

FIGURE 35. FORCE BALANCE

FIGURE 36. NITROGEN SUPPLY SYSTEM

FIGURE 37. TIMING FOR CHANGING MASS FLOW RATES

FIGURE 38. INSTRUMENTATION LOCATIONS

FIGURE 39. PRESSURE vs S/RN

FIGURE 40. INDUCED PRESSURE VS AXIAL STATION

FIGURE 41. ST/ST₀ vs S/RN – UNIFORM DISTRIBUTION

FIGURE 42. COMPARISON OF EXPERIMENT TO THEORY (SYMMETRIC BLOWING)

FIGURE 43. COMPARISON OF EXPERIMENT TO THEORY (SYMMETRIC BLOWING)

FIGURE 44. NFC vs $\alpha = 7^{\circ}$ CONE

FIGURE 45. PMC vs $\alpha - 7^{\circ}$ CONE

FIGURE 46. $X_{CP}/\ell vs \alpha - 7^{\circ} CONE$

(1) 日本には、これでは、日本のできる。

FIGURE 52. INDUCED PRESSURE VARIATION

FIGURE 54. COMPARISON OF EXPERIMENT TO THEORY (ASYMMETRIC BLOWING)

TABLE 1. TEST MATRIX

HIGH ALT., HIGH - \alpha AERO. TEST
T-9 RUN MATRIX

RUN	MODEL/SHELL	Po(PSI)	α	(MAX)	TEST TYPE
1	MK-4, 3M, uniform	100	00	N/A	P & H.T.
2	н	300			
3	н			1	
4	u .				
5	MK-4, VARAPERF, UNIFORM				
6	H		<u> </u>		¥
7	MK-4, 3M, Type III		10 ⁰	+60 ⁰	F & M
8	tt.		20 ⁰	u	n
9	н		5 ⁰	n	11
10	MK-4, 3M, Type Nominal		100	+600	F & M
11	H		20 ⁰	11	1)
12	u		10 ⁰	-60 ⁰	u
13	и		35 ⁰	+60 ⁰	D
14	MK-4, 3M, Type II		100	+600	n
15	n		20 ⁰	"	Ħ
16	н		35 ⁰	16	at .
17	MK-12A, 3M		10 ⁰	+60°	F & M
18	11		10 ⁰	-60 ⁰	**
19	II		20 ⁰	+60 ⁰	n .
20	н		35 ⁰	+60 ⁰	11
21	MK-4, 3M, Type nominal		50	+60°	P & H.T.
22	н		10 ⁰	1	11
23	U		20 ⁰	į	II
24	MK-4, 3M, Type III		00		P & H.T.
25	"		5 ⁰		tt
26	u		10 ⁰		
27	н		20 ⁰		
28	MK-4, 3M, Type II		100		P & H.T.
29			20 ⁰		11
3 0	u ·		35 ⁰		11
31	MK-12A, 3M		00		P & H.T.
32	0	}	100		u
33	u	\int_{Γ}	20 ⁰		u
34	II.	▼	35 ⁰	¥	11

TABLE 2. ACTUAL OUTGASSING RATES

Uniform Distribution:

Run #	Rate 1	Rate 2
1	0.466%	0.830%
2	0.220%	0.580%
3	1.07%	1.58%
4	2.78%	3.68%
5	0.62%	1.30%
6	2.69%	5.30%

1. Rates Defined As:

Assymetric Distributions:

Run #'s	Rate 1	Rate 2
10-13 21-23	2.13%	3.6%
7-9 24-27	1.99%	4.10%
14-16 28-30	1.89%	4.10%
17-20 31-34	1.25%	2.1%

2. Rates Defined As:

$$\frac{\text{(P}\omega \ \text{U}\omega)}{\text{p}^{\infty} \ \text{U}^{\infty}} \ \text{max}$$

REFERENCES

- 1. Zahm, A. F., "Superaerodynamics," <u>Journal of the Franklin Institute</u>, Vol. 217, 1934, pp. 153-166.
- 2. Tsien, H. S., "Superaerodynamics, Mechanics of Rarefied Gases," <u>Journal of the Aeronautical Sciences</u>, Vol. 13, 1946, pp. 653-664.
- 3. Adams, M. C., and Probstein, R. F., "On the Validity of Continuum Theory for Satelite and Hypersonic Flight Problems at High Altitudes," <u>Jet Propulsion</u>, Feb 1958, pp. 86-89.
- 4. Tan, H. S., "Nose Drag in Free-Molecular Flow and Its Minimization," <u>Journal of the Aerospace Sciences</u>, Jun 1959, pp. 360-365.
- 5. Ericsson, L. E., "Effect of Nose Bluntness on the Hypersonic Unsteady Aerodynamics of an Ablating Reentry Body," <u>J. Spacecraft and Rockets</u>, Vol. 4, No. ö, Jun 1967, pp. 811-813.
- 6. Waterfall, A. P., "Effect of Ablation on the Dynamics of Spinning Reentry Vehicles," J. Spacecraft and Rockets, Vol. 6, No. 9, Sep 1969, pp. 1038-1044.
- 7. Ragsdale, W. C., and Horanoff, E. V., 'Investigation of a Side Force Due to Ablation," J. Spacecraft and Rockets, Vol. 16, No. 9, Sep 1978, pp. 1010-1011.
- 8. Dannenberg, R. E., Weiberg, J. A., and Gambucci, B. J., Perforated Sheets as the Porous Material for a Suction-Flap Application, NACA TN 4038, May 1957.
- 9. Laganelli, A. L., Foganoli, R. P., and Martillucci, A., <u>The Effects of Mass Transfer and Angle of Attack on Hypersonic Turbulent Boundary Layer Characteristics</u>, AFFDL-TR-75-35, Apr 1975.
- 10. Walker, G. K., <u>Turbulent Boundary Layers with Mass Addition</u>, G.E. Document No. TFM-8151-021, Nov 1963.
- 11. Libby, P. A., "The Homogeneous Boundary Layer at an Axisymmetric Stagnation Point with Large Rates of Injection," J. Aeronautical Sciences, Jan 1962.

NOMENCLATURE

```
Model base area (in2)
Α
               Model base diameter (in)
D_{R}
               Model length (in)
               Mass flow rate (1bm/sec)
m
               Mass flow rate per unit area (^{1bm}/ft^2-sec)
\dot{m}_{/A}
               Pressure (lbf/in2)
               Model base radius (in)
R_{B}
               Model nose radius (in)
R_N
               Reynolds number
Re
               Surface length (in)
S
               Stanton number
St
               Shell wall thickness (in)
               Velocity (ft/sec)
               Axial length (in)
χ
               Angle of attack (deg)
               Density (1bm/ft3)
               Circumferential position (deg)
         Subscripts
               Boundary layer edge values
е
               Value at location of maximum blowing
max
               Non-blowing values
0
               Wall values
               Free-stream values
```

APPENDIX A

TABULAR LISTING OF TEST DATA

This appendix presents a tabular listing of all the data taken during the test.

Definitions:

NFC = Normal force/(Q * A)

PMC = Pitching moment/(Q * A * D)

YFC = Side force/(Q * A)

YMC = Side moment/CQ * A * D)

PXCP = (Xc.g - Xc.p)/D

YXCP = (Yc.g - Yc.p)/D

Pressure Coefficient = Pressure/Q

 $= \frac{q}{\rho U C_p (Ta - T\omega)}$

where:

Q = Dynamic pressure

A = Model base area = 28.27 in.²

D = Model base diameter = 6 in.

Xc.g. = Axial location of center of gravity = 11.66 in.

from nose

Xc.p. = Axial location of center of pressure

_ = Model length = 19.6 in.

T_a = Adiabatic wall temperature

q = Heat flux

 C_p = Specific heat

		1A 1B 1C 1D 1F 1A 2A 2B 2C 2D 2E 2F 3A 3B 3C 3D 3C 2002% .003% .001% .00			14 18 1C 1D 1E 1F 2A 28 2C 2D 2E 2F 3A 39 7C 3D 3C 3D	
		36 .0004 .0001 .0014 .0010			34 .0010 .0064 .0010 .0229 .0167	
		2E 25 0001 0019 0022 0008 0			2E 2F 194 .0317 . 306 .0109 .	
		20 20 3 .0011 .00 8 .0017 .30			20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	
		28 - 2000. -0009 - 0000. -0016 - 0010.		410N	28 .014.010 .014.010 .025.021.0210 .0210 .0210	
NO.	ALPHA - 0.	1F 2A 1024 .0008 1029 .0(13 1034 .0006	0010 0124 0124	HASF PRESSURE AND GAHOON DAÍA Pressure coefficient at indicated Tap Location	1F 2A (447 .0131 (467 .0220 (489 .0089	46 0158 1609 1787
APDON DATA TAP LOCATI	ALP	2 .0025 .0	6 .0005 .0	HOON DATA T INDICATE	0 1E 0 5 0392 0 7 0425 0	0 4£ 4F 2 .0074 .0158 6 .0165 .1609 5 .0243 .1787
HASF PRESSURE AND GAPDON DATA PRESSURE AT INDICATED TAP LOCATION	FOPM	1C 1024 .002	44 48 4C 4D 4E 4F 4F 6F	HASF PRESSURE AND GAHDON DAÍA RESSURE COEFFICIENT AT INDICATI	1C 1 .0371 .034 .0402 .038	44 48 4C 4D 4E 4F 4F 4F 4F 0139 0090 0094 0.022 0074 0.0159 0.0296 0.0165 0.0165 0.0165 0.0190 0.0190
HASF PRES	TYPE UNIFORM	1A 18 1025 -0028 1025 -0036	4A 4B 0009 0006 00015 00015	HASF PRESS ESSURE COE	1A 18 1387 •0443 1407 •0486 1310 •0486	48 -0139 -0090 -0296 -0238 -0130 -0208
ď	-	0 - N	₽~ N	ă.	0-2	0 ~ N
WTR 1365	RUN	PLOWING RATE BLOWING RATE BLOWING RATE	RLOWING PATE RLOWING MATE BLOWING RATE	WTH 1365	HLOWING KATE BLOWING RATE BLOWING RATE	BLOWING RATE BLOWING RATE HLOWING RATE

*BAD GAGE

*GAGES ONLY ON A AND D RAYS

3F .0285 .0315

1F 02'.6 02'45

.0038 .0044

7r -000. -1400.

RAD GAG

					•	•
					•••	•••
					۲	ي
					•••	•••
			.000		20	75
		, , , , ,	,		:::	•••
		0.00	0.00 0.00 0.00		20	<u> </u>
					:::	•••
		0.00	7. 0.00 0.00		9	u ,
		, e e e	. 000		•	•
		0.00	0.00 0.00 0.00		8	3£
		,	9,00 00.00 00.00			
		****	****		•••	000
		# 0000 0000 0000	0.00 0.00 0.00		2	ž
		000				
	•	6.00 0.00 0.00	2F.	ž	9	3
	11			CAT !	٠.٠	
¥ ,	AL PHA	0.00	0.00 0.00 0.00	وع	4 m m m 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# 103 103 104
ON D		2.2	~ 3 @	E0 14	4A 1.946-03 1.246-03 6.746-04	4D 1.87E-03 1.21t-03 6.76E-04
6APU		4	17	APDO ICATI	_	
A TA	*	3A -20 -17	920	8 S	3A 2.16E-03 1.53E-03 9.74E-04	30 2.12E-03 1.52F-03 9.61E-04
SURE	NAGO.	7,11	30 17	R AT		
PRE SS	Š	2A 23 17 17	20 .25 .24 .19	IESSU JUMBE	2A 2.50f-03 1.93E-03 1.42E-03	20 2.66E-03 2.08E-03 1.56E-03
HASF PRESSURE AND GARDON DATA ODGT AT INDICATED TAP LOCATION	* TYPE UNIFORM	N' ' ' ' '	7	HASF PRESSURE AND GAMDON DATA IANION NUMBER AT INDICATED TAP LOCATION	2.5	20 2.66E-03 2.08E-03 1.56E-03
Podo		¥6. 38. 38. 30.	5. 38. 35.	STAN	A 0 0 0	10 E-03 E-03
		<i></i>			1A 3.76£-03 3.36£-03 2.88£-03	10 3.84E-0 3.34E-0 2.88E-0
	~	0-0	0-0		0 - N	0 - N
νg	Š	RATE RATE RATE	HATE RATE HATE		RATE RATE RATE	RATE RATE HATE
WTR 1365		N 0 N	9 9 9 N 9 9	365	ରି ଦିସ ଅଧିକ	222 222
3		BLOWING BLOWING BLOWING	HLOWING P BLOWING P HLOWING P	WTH 1365	HLOWING HLOWING HLOWING	BLOWING BLOWING HLOWING
		22.25	IPL	7	로로로	ಹ ಹ ಕ

*GAGES ONLY ON A AND D RAYS

		3F 0023 0051 0065			3F 0193 0369 0455	
		2f 34 3t C 3t B 3t 0.0022			30 3F 3F -0179 -0155 -0193 -0372 -0353 -0369 -0468 -0455 -0455	
		30 0022 0052 0057			2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
		36 37 36 30 30 30 30 30 30 30 30 30 30 30 30 30			3C 0161 0344	
		34 0021 5005 74			36 0174 0376 0473	
		2C 2D 2E 2F 3A .0023 .0029 .0028 .0022 .0024 .0049 .0054 .0053 .0049 .0052 .0077 .0080 .0078 .0076 .0067			34 .0201 .0376	
		2F -0022 -0049 -0076			2f .0182 .0356	
		14 18 1C 1D 1E 1F 2A 2R 2C 2D 2E .0050 .0059 .0048 .0046 .0046 .0047 .0047 .0027 .0026 .0023 .0023 .0024 .0054 .0059 .0059 .0053 .0053 .0049 .0054 .0053 .0095 .0093 .0094 .0046 .0078 .0078 .0077 .0080 .0078			26 .0230 .0383	
		200. 00.29 00.54			14 18 1C 1D 1E 1F 2A 28 2C 2D 20.0407.0394.0376.0389.0339.0495.0319 .0495.0495.0319.0675.0655.0656.0658.0672.0551 .0557.0653.0655.0658.0672.0551.0557.0543.0550	
		2C .0023 .0049			20 .0185 .0356	
		28 .0026 .0053			28 .0210 .0384	
	•	2A 0027 0053 0053	•	7007 41	2A .0222 .0381	
A1A A110N	ALPHA -	16 0047 0069	.0014 .0204 .0262	IA NTED T,	0388 0495 0672	46 46 1671 1841
700N F C00		1E .0047 .0068	4D 4E 4F 0019 0019 0019 0019 0019	ON DAT	16 .0393 .0490	4E •0330 •0399
AND GAI ATED T		10 0000 0007 00093	40 40 .0043 .0023 .0043 .0057	O GAM	01 •0386 •0485 •0656	45 040 .010.010.010.010.010.010.010.010.010.0
SSURF INDIC	I F ORM	0.0046 .0066 .0093	.0019 .0043	SURE AN	0376 0473 0655	.0363 .0313 .0363
HASF PRESSURF AND GAPDON DATA PRESSURF AT INDICATED TAP LOCATION	TYPE UNIFORM	1A 18 1C 1D 1E 1F 2A .0050 .0048 .0046 .0047 .0047 .0027 .0069 .0074 .0066 .0067 .0068 .0069 .0053 .0096 .0095 .0093 .0094 .0096 .0078	.0021 .0047 .0054	HASF PRESSURE AND GAMDON DATA PRESSURE COEFFICIENT AT INDICATED TAP LOCATION	18 •0394 •0505 •0665	4A 4B 4C 4D 4E .0192 .0177 .0160 .0175 .0154 .0342 .0337 .0313 .0409 .0339 .0380 .0378 .0363 .0465 .0399
HA PRESSI	-	0050 0050 0069 0069	.0023 .0023 .0054	HASI	41 .040. 7040.	44 .0192 .0342 .0380
	•	0 N	0 → N		0 ~ ()	0 -1 N
59	S	RATI RATI	RATE HATE	ũ	RATE RATE	RATE RATE RATE
WIR 1365		BLOWING RATE BLOWING RATE BLOWING RATE	BLOWING HLUWING BLOWING	#IH 1365	SLOWING CLOWING SLOWING	BLUWING RATE

*RAD GAG

				,	‡
				•••	• • •
				۶	<u> </u>
				:::	
	00000	, oo		×	⋩
		333		•••	•••
	3C 0.00 0.00 0.00	3. 0.00 0.00		2	ī.
				:::	•••
	2000	0.00		6	÷ E
	0.00	0.00 0.00 0.00		•••	•••
				38	36
	3000 2000	0.00 0.00 0.00		•••	•••
	3H 0.00 0.00	36 0.00 0.00		28 8	3 6
	000	000		•••	• • •
•	28 0.00 0.00	2E 0.00 0.00	š	2	=
1			C417	• • •	e c e
ALPHA	0.00 0.00 0.00	0.00 0.00 0.00	97 da	26 - 03 26 - 03 26 - 05	% 40 • 65 • 65 • 65 • 65 • 65 • 65 • 65 • 6
	2-3	433	HASF PHESSURE AND GAKDON DATA INTUN NUMHEK AT INDICATED TAP LOCATION	4A 2.02E-03 5.19E-05 9.92E-07	40 1.86E=03 3.32E=05
	44 118 00.0	0.00	ARDO TCAT		,
*	000	30 • 19 • 00	S GNY	3A 2.23E-03 1.51E-04 1.15E-05	30 2.18E-03 1.01E-04
FORM	3A .20 0020	m	URE FR A		
TYPE UNIFORM	24 .23 0.00	20 25 25 01	PKESS NUME	24 2.57E-03 3.62E-04 2.99E-05	20 2.41£-03 5.17£-04 9.10£-05
7 7	,	N • • •	NSF P	W W W	× 50.0
	14 33 19	10 18 18 08	STAN	1A 16 - 03 16 - 03	10 6-03 6-03
				18 3.75£-03 1.56£-03 4.79£-04	10 3.92E-03 1.53E-03 6.16E-04
•	2 - C	6 F G		0 - V	0-7
P.C.	RAI RAI RAI	RAT	•	RATE RATE RATE	HI CWING RATE HLOWING MATE
•	ING	ING ING ING	2	2 2 2	9 9 9
	BLOWING RATE BLOWING RATE BLOWING RATE	HLUWING RATE HLUWING RATE HLUWING RATE	WIR 1365	HLOWING RATE HLOWING RATE BLCHING RATE	HI CWING RATE HLOWING HATE HI DWING PATE

*GAGES ONLY ON A AND D RAYS

		14 18 1C 10 1F 1F 2A 2B 2C 2D 2E 2F 3A 38 3C .0019 .0014 .0015 .0015 .0017 .0015 .0017 .0015 .0019 .0017 .0014 .0014 .0017 .0014 .00			14 18 1C 1D 1E 1F 2A 2B 2C 2D 2E 2F 3A 3B 1C 3D 9C 00197 .0046 .0077 .0059 .0059 .0059 .0059 .0059 .0059 .00190 .00109 .0	
		.00.0			90000 90000 10000	
		300. 0010.			30. • 0094 • 0630 • 0736	
		30 0000 0000			30. 0049. 0609.	
		38 .0012 .0084			38 •0092 •0638 •0754	
		34 -0012 -0083			34 .0097 .0628	
		76 .0017 .0097			2f .0139 .0736	
		26. 20022 20097			2E • 0175 • 0736 • 0853	
		20. 1002 10100 10110			20 • 0184 • 0756 • 0869	
		26 .010 .0100			20 0152 0753	
		28 .0021 .0101		110N	28 .0169 .0766	
	•	28 00210 0100		P LOCA	2A .0171 .0758 .0883	
11 ION	ALPHA -	.0047 .0127	4 ************************************	A TED 14	16 .0382 .0963	4. 4. *********************************
HASF PRESSURE AND GARDON DATA SSUME AT INDICATED TAP LUCATI	•	1F .0046 .0126 .0153	.0013 .0065	HASF PRESSURE AND GAPDON DATA RESSUME COEFICIENT AT INDICATI	.0370 .0955 .1126	4E .0103 .0488
ND GAH		10 .0046 .0125	46 0090 0090	O GARD NT AT	10 .0369 .0948 .1126	40 .0093 .0690
SURE A	FORM	1C .0047 .0120	48 46 4C 40 4E •0010 .0009 .0007 .0012 .0013 •0062 .0061 .0061 .0065 •0074 .0074 .0075 .0094 .0076	URE AN FFICIE	10 .0377 .0940 .11117	4C • 0053 • 0458
IF PRES	TYPE UNIFORM	18 -0050 -0127 -0153	48 .0009 .0061	PRESS	18 .0406 .0962	48 •0075 •0457
HASF PRESSURE AND GARDON DATA PRESSURE AT INDICATED TAP LOCATION	=	0050 0050 0129	48 46 4C 4D 4E •0010 .0009 .0007 .0012 .0013 •0062 .0061 .0061 .0065 •0074 .0074 .0075 .0094 .0076	HASF PRESSURE AND GARDON DATA PRESSUME COEFFICIENT AT INDICATED 1AP LOCATION	14 .0399 .0976 .1138	48 48 40 40 46 .0093 .0103 .0103 .0103 .0103 .0103 .0103 .0103 .0547 .0559 .0590 .0561
	4	0 - N	0 → N		0-2	0-0
Ş	Ş	RATE HATE RATE	RATE HATE HATE	vn	RATE RATE RATE	RATE HATE PATE
#10 1365		HLUWING BLUWING BLOWING	HLUWING RATE BLUWING HATE HLUWING RATE	WTH 1365	BLOWING BLOWING HLOWING	BLOWING BLOWING MLOWING

*BAD GAG

					•••	:::
					۲	*
					•••	•••
		000.0	00.00		20	35
		-			•••	•••
		0000 0000 0000	36 0.00 0.00		21	<u>.</u>
) C 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.00.00 00.00		•••	•••
		~ • • •	~ • • •		¢,	34
		0.00	0.00 0.00 0.00		•••	•••
			•••		e.	*
		3000	0.00 0.00 0.00		•••	•••
		0.00	36 0 • 00 0 • 00 0 • 00		£	35
					•••	•••
	•	00.00 00.00	0.00 0.00 0.00	0 <u>1</u>	3) E
	ALPHA +	202	300	-0CAT	e e e	666
F DATA	A A	# 000 000	11 00 00 00 00 00	DATA D TAP I	4A 1.99F-03 3.94F-05 3.23E-05	40 1.926-03 3.086-05
CARUG LOCA		44 44 400 400	9000	ARDON		
HASF PRESSUME AND GARDON DATA OUGT AT INDICATED TAP LOCATION	*	A6.00.	30 0.00 0.00	HASF PRESSURE AND GARDON DATA Stanton numher at indicated tap location	34 2-19E-03 4-87E-05 5-51E-05	30 2-14E-03 3-11E-05 3-69E-05
RESSU	TYPE UNIFORM	no.e		ESSUR	2A 2E-03 3F-05 4E-05	20 3E-03 5E-05 1E-05
4 I V	TYPE	24 23 0.00 0.00 0.00	20 . 25 . 0 1	SF PRI	3.00	20 2.73E-03 7.05E-05 7.41E-05
000		.33 0.00 01	01 .34 .01	HASTAN	1A 3.65E-03 7.25E-05 -4.23E-05	10 3.76E-03 1.05E-04 7.45E-05
	•	2 - 0	о с		0-0	0 - N
ço	NO.	KATE RATE KATE	KATE RATE RATE	S	RATE HATE RATE	RATE RATE RATE
20F1 H18		HLOWING HLOWING HLOWING	HLOWING HLOWING HLOWING	MIH 1365	HLOWING HLOWING BLOWING	HLOWING I

*GAGES ONLY ON A AND D RAYS

		14 18 1C 10 1F 1F 2A 28 2C 2N 2F 2F 3A 3B 1C 3D 3D 1F 1F 2A 2D 2C 2D 2F 2F 3A 3B 1C 3D 1F 1F 2D 3D 1F 3D			1A 18 1C 1D 1F 1F 2A 2R 2C 2D 2E 2F 3A 3H 3C 3D 40 000 0000 0000 0000 0000 0000 0000	
		26 20 20 24 25 0018 0025 0024 32 0026 0032 0032 67 0059 0067 0069		z	26 20 26 98 .0144 .0201 .0194 46 .0199 .0241 .0245 64 .0430 .0485 .0500	
HASF PRESSURE AND GARDON DATA PRESSURE AT INDICATED TAP LOCATION	ALPHA = 0.	1F 1F 2A 5.0042.0051.0025.00 9.0051.0060.0034.00	* 4C 4D 4F 4F .0020 .0021 .0016 .0022 .0025 .0031 .0029 .0038 .0052 .0061 .0059 .0066	NDON DATA I INDICATED TAP LOCATIO	1f 1f 2A 9 0337 0446 0196 01 0 0389 0455 0258 02 0 0495 0526 0481 04	4F 1 .0125 .0178 5 .0223 .0246 1 .0431 .0495
	TYPE UNIFORM	14 16 16 10 10 10 10 10 10 10 10 10 10 10 10 10	4A 48 4C 4D .0021 .0090 .0020 .0021 .0034 .0185 .0055 .0031 .005+ .0654 .0052 .0061	HASF PRESSURE AND GARDON DATA PHESSUME COFFFICIENT AT INDICATED TAP LOCATION	1A 18 1C 1C 0.0430 .0430 .0384 .0359 .0385 .0486 .0490 .0491 .0494 .0578	4A 4B 4C 4D 4E 4F 0171 .0125 .0178 .0178 .0235 .0225 .0157 .0178 .0235 .0235 .0246 .0431 .0495
414 1 1855	RUN	HLOWING HATE O Blowing Pate 1 Blowing Rate 2	PLOWING RATE O Hlowing Rate I Blowing Rate 2	WTH 1365	HLUWING RATE O HLUWING RATE 1 HLUWING RATE 2	BLUWING HATE O BLUWING RATE I HLUWING RATE 2

*BAD GAGE

	00°0 00°0 00°0	000 000 0.00		 	, , , , , ,
		4.6 0.00 0.00 0.00			000
		7.00 000 000			
		ີ່ວ່ວ		پر	*
	000			•••	•••
	3C 0.00 0.00	3f 0.00 0.00		10	<u> </u>
				•••	•••
	,	0.00		4	4
	0000	0000		:::	•••
		~ • • •		æ	*
	9000	9.00 0.00 0.00		•••	:::
	c o o			æ	¥
	H 0 0 0	0000			• • • •
	A000	w 000	7	20	31
		000	41 10¢	-	•••
LPHA	0.00	16 0.00 0.00	- F00	A 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 F = 03 F = 04
•	700	m 40	N DAT	4.2.516 9.186 8.046	4D 1.49E-03 5.56E-04 3.98E-05
	0.0	9-00	6ARDO DICAT		30 F = 03 F = 04 F = 05
٠ •	3A 20 20	06. 06. 06.	AND	3.90E	30 1.33E-03 5.75E-04 -3.04E-05
41FOR		•	SSUPE 19ER /		
ID 3 d	24 20 13 101	20 121 151 101	PRES.	2,30E	20 2.44E-03 1.44E-03 7.78E-05
=	o o o	_ 0- 17- 20	HASE		
	4.55.	22.00	v	1A .36E- .49E-	1D 3.34E-03 2.19E-03 6.82E-04
N.	0-0	0-0			2 2 3
Š	RATE RATE RATE	RATE RATE RATE		ATE ATE	PATE RATE RATE
	9 9 9 N 2 9 N 2 9	9 N S S S S S S S S S S S S S S S S S S	1365	က် ကိ ကိ ဟ ထ ထ	င် ကို ကို က သ လ
	3104 3104 3104	2018	Ę	0.00	BLOWING HLOWING BLOWING
		5 TYPE UNIFORM ALPHA - 0. 1A 2A 3A 4A 1R 2B 3H E 0 .29 .20 .34 .22 0.00 0.00 0.00 E 1 .26 .13 .20 .10 0.00 0.00 0.00 E 2 .15 .01 .01 0.00 0.00 0.00	HUN 5 TYPE UNIFORM ALPHA - 0. HATE 0 .29 .20 .34 .22 0.00 0.00 0.00 0.00 RATE 1 .26 .13 .20 .10 0.00 0.00 0.00 0.00 RATE 2 .15 .01 .01 0.00 0.00 0.00 0.00 0.00 RATE 0 .29 .21 .12 .13 0.00 0.00 0.00 0.00 RATE 1 .23 .15 .06 .06 0.00 0.00 0.00 0.00 RATE 2 .08 .01 0.00 0.00 0.00 0.00 0.00	RATE 0 .29 .20 .34 .22 0.00 0.00 0.00 0.00 0.00 0.00 0.00	RATE 0 .29 .20 .34 .22 0.00 0.00 0.00 0.00 0.00 0.00 0.00

*GAGES ONLY ON A AND D RAYS

BAD GAG

Ų,

					•••	*
					ب م ن د	, , ,
		0000	0.00		2C	۶
			000			300
		3C 0.00 0.00	3F 0.00 0.00		2	<u>.</u>
		0.00	00.00		•••	•••
		000	200		4	4
		0.00	0.00 0.00 0.00		000	•••
		_ 0 0 0			38	35
		**************************************			000	
		3+ 0.00 0.00	3F 0.00 0.00		£	¥
			000		• • •	
	•	22.0000	2E 0.00 0.00	₹	B	3
	4	2200	999	0CAT 1	¢ ċ ċ	٠.٠
ž	AL PHA	20000	1E 0.00 0.00 0.00	ATA TAP L	4A 2.2RE-03 7.99E-05 1.37E-04	40 1.66F=03 4.19F=05 9.45E=05
GOOT AT INDICATED TAP LUCATION		\$ 1000	0,00 0,00 0,00	HASF PRESSURE AND GANDON DATA STANTUN NUMHER AT INDICATED TAP LOCATION		
TAP				S SAK	3.52E-03 3.88F-05 1.36E-04	30 1.46E-03 4.65E-05 3.10E-06
ATEO	*	¥6.00	30 •12 0•00	AE AN		
	TYPE UNIFORM	2.4 0.60 0.01	20 22 0.00	KESSU	2A 2.26F-03 -7.91F-06 6.09E-05	20 2.60£-03 -1.01£-04 -3.19£-05
-	TYPE		() · · ·	15F P.	2.2	2.66 -1.0 -3.19
9		4.00.0 0.00.0	10 01 01	STAN	18 6-03 6-05 6-05	10 E-03 E-05 E-04
	٠	o~ ~	0~~		1A 3.056-03 9.676-05	10 3,33E-03 -7,81E-05
	KUN		11E 0		OV	0 ~ V
	*	223 233	3 7 3 9 9 9	593	RATE RATE	RATE RATE RATE
		BLOWING RATE RLOWING RATE BLOWING RATE	HLOWING RATE HLOWING RATE BLOWING RATE	#TH 1365	HLOWING HLOWING HLOWING	HLOWING BLOWING BLOWING
		r ž v	īīī	,	# # #	###

*GAGES ONLY ON A AND D RAYS

		YXCP 7969 -7301 -3574			4xcp -1523 -0201 -0759			7XCP 2.7482 .6956
		PACP 2181 2136			PXCP 1164 1137			3012 1991
	•	7 + 00 18 - 00 6 7 00 6 7		•	**************************************		•	YHC 0015 -0047
₹	ALPHA - 10.	4FC • 0061 • 0139 • 0191	<	ALPHA = 20.	7fC . 00116 . 0117		ALPHA = 5.	
FORCE DATA		PMC065105100510	FORCE DATA		PMC 1.0855 1.0786	FORCE DATA		PMC0332
WIR 1365	111 34XI	NFC . 2984	WTR 1365	TYPE III	NFC • 7339 • 7182	ETR 1365	TYPE JII	NFC • 1104 • 0891 • 0718
	RUN 7	BLOWING RATE 0 HLOWING RATE 1 BLOWING RATE 2		RUN B	BLOWING RATE 0 BLOWING RATE 1 BLOWING RATE 2		RUN 9	BLOWING RATE 0 BLOWING RATE 1 BLOWING RATE 2

	न्धा । अध	t Queck DATA	<u> </u>			
KUN 10	TYPF NOMINAL	ı	ALPHA = 10.	•		
	S ₹	PMC	¥1 C	YMC	FACE	YXC.
HATE	1008	4440	0036	.013H	2600	7372
HLOWING HATE 1	. 4603	Ubl>	0200	.0038	~ 19h	4.5407
HLUNING HATE 2	1997•	0.50	₹*00.	.0063	2217	Z.6430
	•					
	WTH 1305	FORCE DATA	4.			
RUN 11	TYPE NOMINAL	ı	ALPHA - 2	.co.		
9440	NFC	PHC	YFC	THC	PXCP	YXCP
	.692	950	00.00	4000	1361	10050
	1689	9060-	1900	.0035	-1314	.6851
	MTH 1365	FORCE DATA				
RUN 12	TYPE NOMINAL		ALPHA = 10.	•		
	i i	ų.	3			
RATE	.3015	0642	003e	2400.	PXCP 2129	4XCP A305
	.2821	0602	0127	0045	2133	0077.
BLOWING RATE 2	•5693	0583	0173	0600	2159	.6894
			•			
	WTR 1365	FORCE DATA	٤			
RUN 13	TYPF NOMINAL	ı	ALPHA - 3	J5.		
A State Settle to	NFC 1.6.169	PHC	2 4 A	YMC	PXCP	4XCP
KA TE	1. 1992	1386	*600	1100	2660	5411-
BLUWING NATE 2	1.3880	1328	.0140	-0005	0952	.0413

		7XCP -1.2751 -1.9342 11.2593			.1086 2190 6067			YXCP 1617 1456 1925
		PXCP 2248 2413			-1139			-1021 -1039
		- 0000 - 00031 - 00031						7MC .0028 .0060
	ALPHA - 10.	-0012 -0014 -0014 -0028	_	ALPHA = 20.	7fC -,0114 -,0078 -,0055		ALPHA = 35.	YFC 0454 0387
FORCE DATA		PMC 0619 0615	FORCE DATA		PMC 0767 0784 0784	FORCE DATA		PHC14311423
WTR 1305	11 34XI	NFC .2756 .756 .2395	WTR 1365	II 34A1	NFC 65732 6554	WTR 1365	TYPE 41	NFC 1.4012 1.3931 1.3971
	RUN 14	BLOWING RATE O BLOWING WATE 1 BLOWING WATE 2		RUN 15	BLOWING RATE O BLOWING HATE 1 BLUWING HATE 2		RUN 16	BLOWING RATE 0 BLOWING RATE 1 BLUWING RATE 2

		YXCP	2836	2621.7	. >003				YXCP	7.5736	• 4935			YXCP	2336	0283					YXCP 0324	-,7257
	009+ = ¢	PXCP	6051-	CO*1.	1474			₀ 09- = \$	PXCP	1365	1494			PXCP	1171	5/11/5					PACP 1024	1015
	•	YHC	1000-	5100	.0022				YHC	0016	0025			YHC	0019	£000°-					YMC . 0004	.0019
	ALPHA = 10.	YFC	.0006	1200.	2500.			ALPHA = 10.	YFC	0011	0038		ALPHA = 20.	YFC	.0080	1010		•		ALPHA = 35.	7FC 0114	0062
FORCE DATA		PHC	0309	9769	4160		FORCE DATA		PHC	0386	0395	FORCE DATA		PHC	0738	77/0	•		FORCE DATA		PHC 1237	-,1226
WTR 1365	TYPE 4	NFC	.2361	10720	•2104		WTR 1365	TYPE 4	NFC	.2729	9492	WTP 1365	TYPE 4	¥€C	•6298	.6163	}		WTR 1305	TYPE 4	NFC 1.2089	1.2101
	RUN 17		BLOWING RATE 0	3 1 2	HLOWING RATE 2			RUN 18		BLUMING RATE 0			RUN 19		RATE	BLUWING RATE 1				KUN 20	RATE	BLOWING RATE 1 HLUWING RATE 2

*BAD GAG

D.

				1.47F-1 B.4FF-1 -2.49F-1	3. 1. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
				1.755-01 1.476-0 1.665-04 8.466-0 3.015-06-2.496-1	3,24r=03 1,661,=03 1,661,=03
	0.00	74 64. 15.			2F 3.30F-03 1.34F-03
	3c • 05 • 00 • 00	3f .20 .07		1C 2C 2.996-03 1.A1F-03 5.76E-04 7.49F-05 9.82E-05 -1.A7E-05	16 4.29E-03 2.92E-03
	2C .21 0.01	76. 71.		48 6.85F-04 4.09F-05 7.55E-06	**
	54.00 100	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
	1000	* 0000		38 9.59E-04 6.76E-05 -1.39E-06	*,
	7228			* #	2F 4.44F = 03 1.20F = 03
	AE	* 0000 0000 0000		:::	4.7
, ,	+ 2000	26 • 50 • 15	NTION	18 2,36£-03 1,00£-03 2,52£-04	*31
Al PHA	18 .27 .12 .03	* 0000	DATA TAP LOCA	4A 1.466-03 4.156-04 6.51E-05	4D 3.37E-03 8.27E-04
	44 20.05 10.	40 • 38 • 10	PDON (
¥	3A .0.0 0.00	96 90 90 90 90 90 90 90 90 90 90 90 90 90	E AND GA(AT INDI	3A 1.27£-03 3.20£-04 3.24£-05	30 3.52E-03 7.76E-04
TYPE NOHINAL	24 20 20 20	20 . 39 . 04 . 00	HASF PRESSURE AND GARDON DATA STANTON NUMHER AT INDICATED TAP LOCATION	24 2.14E-03 7.84E-04 1.80E-04	20 3.43E-03 3.40E-04
	* 0000 0000	07.00	HAS	**	10 4.10E-03 1.28E-03
7	2 - 0	0 - 0		3 - N	0-0
ž	RATE RATE KATE	HATE RATE RATE	νņ	RATE RATE RATE	HATE
	BLOWING BLUWING BLOWING	BLOWING HLUWING HLUWING	WIR 1365	HLOWING HLOWING BLOWING	HL OW TNG

*BAD GAGE

		3F 0080 0080			3F 0591 0561	
		0197			36 1309 1267	
		30 0079 0076 0080			30 0570 0533	
		0000			0030 0030 0046 0046	
		38 0003- 0020			38 0023- 0061	
		3A 0002- 0016-			3A 0015- 0072 0168	
		2F .0067- .0076			2F 0483- 0535	
		2E**			2E 0978 11057	
		20 0063 0084 0101			20 0453 0592 0683	
		2R 2C 2D 2E 3A 3B 3C 3D 3F 3F 3F 3C 3D 3F 3F 3F 5C 5003 .0063 .0053 .0057 .0067 .0067 .0067 .0067 .0068 .0058 .0058 .0058 .0057 .005			* 36 3C 3D 3E 36 3B 3C 3D 3F 3F 3E 3C 3D 3F 3F 3C 3D 3F 3E 3C 3D 3F 3E 3C 3D 3F 3E 3C 3D 3E 3C 3D 3E	
		28 0003 0018 0031			28 0022 0127 0211	
		0003 0017 0012		10CA1	0022 0121 0121	
14 110N	ALPHA = 10.	16 0082 0096	0000	A 1E0 TAI	1F .0585 .0573	44 0000 0000
HASF PRESSURE AND GARDON DATA SSUME AT INDICATED TAP LOCATI	₹	0125 0125 0125	4E 02000 02020	HASF PRESSURE AND GAMDON DATA RESSURE COEFFICIENT AT INDICAT	16 .0697 .0882 .0985	4E 14340 14210
NU GARI		0081 0089 0116	0088 0087 0089	D GAHD	10 .0578 .0624 .0788	40 0633 0615
SUPE A	INAL	10 0030 0037 0064	0011 0003 0012	URE AN	1C 0213 0264 0435	4C .0080 .0024
F PRES HE AT	TYPE NOMINAL	18 -0024 -0030 -0055	.0010- .0002 .0011	PRESS	18 10. -0174 -0213 -0208 -0264 -0374 -0435	48 -0069- -0014
HASF PRESSURE AND GARDON DATA PRESSUME AT INDICATED TAP LOCATION	7	1A 1B 1C 1D 1F 1F 2A .0032 .0032 .0032 .0030 .0031 .0025 .0003 .0037 .0039 .0125 .0091 .0017 .0055 .0064 .0116 .0145 .0096 .0032	48 46 40 46 40 46 46000900100011 .0089 .0200.0000 .0006 .0003 .0087 .02020.0000 .0013 .0013 .0012 .0089 .02110.0000	HASF PRESSURE AND GAMOON DATA Pressure coefficient at indicated Tap Location	14 18 1C 1D 1E 1F 2A 28 •0232 •0174 •0213 •0578 •0897 •0585 •0022 •0022 •0203 •0208 •0264 •0624 •0882 •0573 •0121 •0127 •0349 •0374 •0435 •0768 •0985 •0648 •0217 •0211	48 46 40 4E 46 -00633 -14340.0000 -00633 -00634 -0084 -0054 -0055 -14210.0000 -0091 -0092 -0083 -0604 -14300.0000
	HUN 22	16 0 16 1	16 0 16 1 16 2		RATE O Rate 1 Rate 2	RATE O Rate 1 Rate 2
WTR 1365	3	BLOWING RATE RLOWING RATE RLOWING RATE	RLOWING RATE HLUWING RATE BLOWING RATE	1365	ING RA ING RA ING RA	ING RA ING RA ING RA
2		BLOW RLOW	ALOW HLOW BLOW	WTR 1365	BLOWING BLOWING BLUWING	BLOWING B BLOWING B BLUWING B

*BAD GAGE

				46 1.74F-03 1.47F-04 -2.43F-05	4F 5.4 HF-03 3.40F-03 2.67 F-03
				1.52c-01 1.74F-01 2.52F-04 1.47F-04 1.30r-05 -2.H1F-05	7F 5.446-03 3.666-03
	4. . 0. . 0. . 00	ት የት የት የት		2C 1.67E-03 9.85E-05 -3.44E-05	2F 5-13F-03 2-92F-03 1-45E-03
	3C •••3 ••03	₩ ₩ ₩ ₩ ₩		1C 2.65F-03 4.50F-04	1F 5.59F-03 4.07E-03 2.59E-03
	2C .19 .01	26 .59 .36 .16		48 4.276-04 1.756-05 -1.766-05	***
	31.00.00	16 • 66 • 50 • 29			*
	4 P P P P P P P P P P P P P P P P P P P	* 0000		38 5.72E-04 3.85E-05 -3.20E-06	• • •
	34 0.00 0.00	* 000		* **	2F 8.82F-03 4.63F-03
.01	90000	1.02 1.02 .57 .23	110N	18 1.70E-03 5.40E-04 7.93E-05	* 1
ALPHA = 10.	16 • 20 • 07	**************************************	DATA D TAP LOCA	4A 1.21£-03 5.29£-04 1.77€-04	40 5.396.03 2.486.03
	¥,-00	40 .96 .30 .13	SAKDON		
٩٢	3A .13 .05	30	E AND	3A 1.10E-03 4.06E-04 7.12E-05	30 5.83E-03 2.45E-03
TYPE NOMINAL	2A .22 .10	20 .60 .16 .05	HASF PRESSURE AND GAKDON DATA STANTON NUMBER AT INDICATED TAP LOCATION	2A 1.88E-03 7.74E-04 2.44E-04	20 5.17E-03 1.34E-03 4.06E-04
-	* 0000 0000	01 25. 20.	HASF STANTO	***	10-365-4 01-363-4 01-363-4
KUN 22	7 E E O	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		3 - N	0-1
ž	K RATE G RATE G RATE	G RATE 16 RATE 16 RATE	9	RATE PATE RATE	RATE
	HLUWING BLOWING HLUWING	HLOWING HLOWING HLOWING	WTH 1365	BL OW ING BL OW ING HL OW ING	BLOWING BLOWING

*BAD GAGE

		3F 0179 0190			3¢ 1325 1330	
		7F .0478 .0431			31.14 31.13	
		30 0181 0187 1910			361 1361 1367	
		2000. 2000. 2000.			0100 017 0037	
		38 00012- 0005-			38 0091- 0033-	
		0000- -0000- -0000-			4,000 4,000 1,000	
		2f -0192- -0196-			25 1423- 1413-	
		2E 1421 1320			2E 0000 9520 4383	
		20 .0189- .0197-			20 -13990 -1420-	
		2C • 00012 • 0001			2C .0006 .0006	
		28 .0003 .0003		110N	28 -0020- -0022 -0077	
	5.	2A -00100 -00010		P LOCA	2A .0072- .0010	
11A 1110N	ALPHA = 23.	16 0164 0163	***************************************	A TED TA	1215- 1179- 1234	***************************************
HASF PRESSURE AND GAPDON DATA PRESSURE AT INDICATED TAP LOCATION		16 .0401 .0399	4A 4B 4C 4D 4E 4F 6F 6F 00000-00004-0018-0012-0167-04550.0000-00008-0001-0178-04620.0000	HASF PRESSURE AND GARDON DATA PRESSURE COFFICIENT AT INDICATED TAP LOCATION	1E -2972 -2877 -2904	4A 48 4C 4D 4E 4F006401340086 .1240 .33740.00000.0000.000000850007 .1284 .33300.00000.0004
IND GAR		10. 10139 10141	45 -0167 -0178	ID GARD NT AT	10 1032 1015	40 .1240 .1284 .1312
SURE INDICA	INAL	.0010 .0018 .0038	40 • 00012 • 00001	URE AN	10 .0074 .0132	.0086 .0006
SF PRESURE AT	TYPE NOMINAL	18 •0011 •0076	68 00018 00008	PRESS JRE COF	18 .0084 .0118	*8 *0134- *0055-
HA! PRESSI	=	1A 1B 1C 1D 1E 1F 2A 2B 7C 2D 2F 3F 3A 3B 7C 3D 3C 010 0010 0011 0010 0139 0401 0164.001000100012 0139 0401 0164.001000030012 01891421 019200190014 0181 0181 0474 0179 0010 00075 0018 0141 0399 0163.0001 0003 0001 0197-1320 019600014 00085.0187 0411 0184 0007 00027 00032 00038 0189 00414 0176 0010 0011 0012 062240625 0208 0006 00001 0003 0197 06414 0176 0010 0011 0012 062240625 0208	4A 4B 4C 4D 4E 4F	HASF	14 18 1C 1D 1E 1F 2A 2B 2C 2D 2E 2F 3A 3B 3C 3D 1F 35 35 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4A 4B 4C 4D 4E 4F 4F006401340006200000052007 -1284 -33300-000000420050 -0041 -1312 -33410-0000
	ES NON	0 - V	0 - 0 6 E E		о -	2 - 0 K II II
365	ž	G RATE G RATE G RATE	G RATE G RATE G RATE	3	G RATE G RATE G RATE	G RATE O G RATE 1 G RATE 2
WIP 1365		HLOWING HLOWING	BLOWING I	WTH 1365	HLOWING H	HLOWING P PLOWING P HLOWING P

*BAD GAGE

				4r 1.13f-03 2.01f-04 -6.56f-03	4F 7.07F-03 5.43F-03
				3r 1.35r-03 1.13f-03 4.07r-04 2.01f-04 6.72r-05 -6.5kf-05	7. 7.67r-03 6.10r-03
	, , , , , , , , , , , , , , , , , , ,	4		2C 1.25E-03 2.04E-04 -3.27E-05	2f 9.40E-03 7.00E-03
	30 • 15 • 01	36 • 86 • 74		10.98E-03 3.68E-04 7.54E-06	1F 9.A3E-03 8.28F-03
	2C • 14 • 02	75 1.06 .85 .52		48 5.11E-04 7.78E-07 -4.43E-05	*
	10.00.00.00.00.00.00.00.00.00.00.00.00.0	1F 1.00 1.00			•••
	3	* 000		38 6.68E-04 3.76E-05 -4.01E-05	**************************************
	.			**	2F 1.55F-02 1.15F-02
	3.00 0.00 0.00	* 0000		•••	1.55
* CO.		2t 1.74 1.39	TION	1,086-03 2,036-04 4,216-06	*31
Al PHA	16 17 00.00	*	DATA TAP LOCA	4A 1.12E-03 1 5.81E-04 7	4D 6.756-03 7.946-03
	4.150 5.050	40 .76 .48	OON .		
٩٢	3A -13 -07	30 .58 .29	E AND GAF AT INDIC	3A 1.16E-03 5.57E-04 1.92E-04	30 8.02E-03 4.82E-03
TYPE NOMINAL	2A 116 118 05	20 1.07 .52 .26	HASF PRESSURE AND GAKDON DATA STANTON NUMBER AT INDICATED TAP LOCATION	2A 1.44E-03 8.79E-04 4.71E-04	2D 9.54E-03
-3	4 0 0 0 0	10 1.02 7.04 1.17	HASTANI	* <	10 20 9.02E-03 9.54E-03 5.51E-03 4.29E-03
63	0-0	0 - 0		0 ~ N	9 -
KUN 23	HATE PATE HATE	HATE RATE RATE	ι ດ	RATE RATE RATE	ZATE
	HLOVING BLOVING BLOVING	HLUWING HLUWING HLUWING	WIN 1365	BLOWING FI BLOWING FI BLOWING F	BLOWING RATE

*BAD GAGE

		3F 0012 0034 0051			3F 0089 0244 0352	
		0010 . 0041 .			7F 0076 . 0291 .	
		30 0011 0040			30 3081 3286 3387	
		7C 0012 . C 0076 . C			3C 0089 .0 375 .0	
		36 0013 .0			38 0093 .(0223 .(
		34 0010 0028 0040			3A 0073 .(0200 .(0334 .(
		1A 1B 1C 1D 1F 1F 2A 2B 2C 2D 2E 2F 3A 3B 7C 3D 1F 30 3D 3C			14 18 1C 1V	
		ZE 0017 • 0062 • 0062 •			2E 0123 0296 0426	
		20 0022 - 0051 -			20 0162 • 0362 •	
		2C .00.21 • .00.66 •			2C 0159 0329	
		28 0019 0035		NO I	28 0142 0245 0405	
	•	2A 0015 0027 0054		, LOCA1	2A 0113 0189 0369	
NO 1	ALPHA -	16 0039 0051	4f 0016 0030 0041	LED TAF	16 0288 0360 0469	4F 0117 0214 0283
HASF PRESSURE AND GARDON DATA PRESSURE AT INDICATED TAP LOCATION	₹	16 0039 0062 0079	44 48 4C 4D 4F 4F .0011 .0013 .0016 .0011 .0014 .0016 .002 ^K .0029 .0031 .0029 .0034 .0030 .003H .0041 .0044 .0040 .0044 .0041	HASF PRESSURE AND GARDON DATA Pressure coefficient at indicated Tap Location	1F 0289 0441 0543	4A 4B 4C 4D 4E 4F 4F 0.0081 0.0106 0.0117 0.0180 0.0203 0.0222 0.0203 0.0294 0.0214 0.0259 0.0278 0.0302 0.0273 0.0305
ND GARI TED TAI	•	0846 0043 0398	40 0029 0029	GARDI	10 6224 0268 2724	40 • 0203 • 0273
SUPE AL		10 .0039- .0052 .0076	4C .0016 .0031	URE AN	1C -0285- -0369 -0522	4C •0114 •0222 •0302
F PRES HE AT	1 YPE 111	18 -0043 -0058 :0061	48 -0013 -0029 -0041	PRESS	18 •0320 •0355 •0421	48 40. •0096 •0114 •0203 •0222 •0278 •0302
MAS PRESSU	1	14 .0041 .0047	44 .0011 .0025 .003H	HASF PRESSU	A1 .030. 7660.	.0081 .0180 .0259
	3	0 - 2	0 - 0		0 - 2	0-8
345	Ş	RATE RATE RATE	RATE	č	HATE HATE	RATE RATE
#TP 1365		BLUWING RATE BLUWING RATE BLUWING RATE	HLOWING RATE BLOWING RATE BLUWING RATE	WTH 1365	PLOWING BLOWING BLOWING	BLOWING RATE BLOWING RATE BLOWING RATE

*BAD GAGE

				1 . / f f - 0 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	4F 1 - 14F - 0 3 3 - 34F - 04 3 - 13F - 05
				3C 4C	1.59r-03 2.22r-03 5.75r-04
		رن ور	4.6 .022 .04	20 20746-03 1.456-04	26 2-41F-03 6-74F-04 7-29E-05
		3C • 25 • 402	36 • 18 • 03	*2	1F 62E-03 27E-03 08E-03
	ند	32.00.00	75 .07 .01	48 2-116-03 3-306-04	
	*		11 .41 12 .28 10 .12	38 38 5.42E-03 5.85E-04 6.18F-05	•
		3H 4B -2A -24 -07 -04 -01 0-00	3F 4E •24 •21 0•00 •02 0•00 0•00	2-467-03 2-8175-04-6-	
	•	28	2E 0.035 0.00	mmm 000 n i i i	,
4 1 4 7	ALPHA -	18 .45 .32	16 .146 .05	10C	4D 2.14F-03 4.0 1.29t-04 1.0 1.08E-05 4.3
PRESSURE AND GARDON DATA INDICATED TAP LOCATION		44 23 10 10	0, 30.0 30.0	PHESSURE AND GAMDON DATA I NUMBER AT INDICATED TAP 2A 3A 4A 26E-03 2.18E-03 2.07E- 22E-04 5.54F- 3.72E-04 3.24E-	
SURE AND		34 .25 .08 .01	30 .27 .03 0.00	FR AT INDICAL	30 3 2-35E-03 5 2-25E-04 5 1-10E-05
_	ITPF III	45 08. 91.	20 .31 0.00	MASF PHESSUL ANTON NUMBEL 2A 3 4.66E-03 3 3.17E-04	2D 2.74E-03 3.46E-05 2.18E-06
HASP OD:01 A		4.6.1	***************************************	51AM 51AM 10 10 10 10 10 10 10 10 10 10 10 10 10	* 01
	*	0 - N	0 ~ 0	0 - 1	0 - 2
	KUN C4	KA TE	RATE RATE RATE	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ATE ATE
41p 1365	_	H UWING KATE BLUWING RATE BLOWING RATE	BLUWING RATE BLUWING RATE BLOWING RATE	WIN 1365 HOWING RATE HOWING RATE	HLOWING HATE HLOWING RATE HLOWING RATE

*BAD GAGE

Į

BAD GAG

			٦	3 3.44 -0.5 5 3.44 -0.5 7 -1.7 # -0.	44 10-36-0-1 10-31-0-1
			۶	1.67: -07 5.21: -05 -5.44: -04	7r F0-364-5 F0-364-63
	40°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	46 17 19 19	7.7	2.18E-03 7.A7F-06 -3.18E-05	26 3.536+03 1.44E-03
	3C • 18 • 00 • 00	35 -27 -12 -03	*31	•••	1F 3.97E-03 2.44E-03
	25. 0.00 0.00	7. 		7.76f-04 1.59f-05 -2.21E-06	46.45E-03
•	* 0000			1.09F-03 7. 4.78F-05 1. 1.6AE-05 -2.	3£ 4.91£-03 4. 1.72£-03 2.
	2,00 000	4.0° 4.0° 4.0° 4.0°			
	38 • 12 • 01	36 53 0.05 0.05		3 1.47F-03 3 1.47F-04 4 4.49E-05	2F 3 5.83F=03 3 8.57E=04
, s	28 • 15 • 62	2E • 63 • 10	CATION	7.686-03 1.416-03 4.156-04	16 4,106-03 2,586-03
AL PHA =	HI 51	36 • • • 66 8 • • 30	U TAP LO	3.37t-04 5.40t-05	4D 3.73E-03 6.4RE-04
	4 4 4 17 17 17 17 17 17 17 17 17 17 17 17 17	30 40 •41 •40 •06 •08 0•00 •01	RESSURE AND GANDON NATA NUMBER AT INDICATED TAP LOCATION 2A 3A 4A 11	3.50E-04 4.26E-05	30 3.77£-03 5.24£-04
174F 111	2A 3A .23 .1R .09 .04	20 .42 .03 .00 .00		44E-04	20 3.87E-03 3.87E-03
141	1A •34 •24 •11	* 0000	ASF NTON	2.07E-03 6.1 7.07E-03 6.1	* 0
\$3	0-~	0-0	•		• •
RUN 25	RATE RATE RATE	RATE RATE RATE		× × ×	MATE
	BLOWING RATE HLOWING RATE HLOWING RATE	BLOYING RATE BLOWING RATE HLOWING RATE	#IK 1365	BLOWING RATE	HLOWING RATE (

*BAD GAGE

		36 1080 1084 1084			3F (567 (558	
		2000			7. 4. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	
		000			344	
		00.00.00.00.00.00.00.00.00.00.00.00.00.			30 4595 4631 9655	
		3C 0004 4000 4000 4000			3C 00098 0183	
		38 0002- 0415			36 0012- 0104 0167	
		3A 0002 0014			3A 0016 0100 -	
		2F 0068 0072 -			2f 04Al 0505 .	
		2E 0144 • 0151 •			2E 1025 1056	
		20 0063 0078 0095			20 0451 054A 0662	
		2C 0002 0021 0021			1A 1B 1C 10	
		28 0003 0022 0037		NO I	28 0023 0152	
	10.	2A 00.02 00.18 60.34		10CAT	2A 0011 0123 0239	
14 110N	ALPHA - 10.	11 00.078 00.066 00.95	75 7500 7600 7600	A TED TAS	1F 0555 0604	4£ 0691 0659
HASF PNESSURE AND GARDON DATA SSUME AT INDICATED TAP LOCATI	₹	16 -0125 -0148 -0166	48 46 46 40 46 46 46 46 46 46 46 46 46 4000H-0000H-0000F-0000F-0000F-0000H-0010F-001	HASF PRESSURE AND GARDON DATA RESSUWE COEFFICIENT AT INDICAT	16 .0889 .1036	44 46 4C 4D 4F 4F 0055-0040-0053 .0700 .1472 .0691 0048 .0056 .0054 .1445 .0659 0112 .0114 .0120 .0706 .1464 .0660
VD GAP	•	10 0719 0546 0460	40 0000 96000 0101	GARD	10 5132 3835 3214	0070 0070 0070 0070
SURE AL		1C 0028- 0041-	0000 0000 0000 0017	RE ANG FICIE)	10 0198- 0288-	00051 00064 0120
PRES	TYPE 111	18 0025 0035 0056	48 0006- 0008 0016	PRESSU	18 0179 0245 0389	48 0040- 0056
HASF PRESSURE AND GARUDN DATA PRESSURF AT INDICATED TAP LOCATION	111	1A 1B 1C 1U	44 46 46 40 46 46 46 46 46 46 46 46 46 40 46 40 40 40 40 40 40 40 40 40 40 40 40 40	HASF PRESSURE AND GARDON DATA PRESSURE COEFFICIENT AT INDICATED TAP LOCATION	1A .0209 .0265 .035h	4A 4B 00550040- .004H .0056
	56	2 T O	2 - 0		6 T C	0 – 0
365	RUN	KAN	RAT	ιČ	RATE RATE	RATE RATE
wlp 1365		HLOWING RATE HLOWING RATE HLOWING RATE	HLUWING RATE HLUWING RATE HLUWING PATE	WTH 1365	BLOWING RATE HLOWING RATE HLOWING RATE	BLUNING RATE HLUNING RATE RLUNING RATE

*BAD GAGE

*BAD GAGE

A The second second of

		3F -0181 -0187			3F 1331 1334	
		14 18 1C 10			1A 1B 1C 1D TE 2A 2R 2C 2D 2E 7F 3A 3B TC 3D TF 3F 36 .0082 .0082 .0082 .0089 .00672635 .2994 .1266009900750182 .3167 .1520006700170016 .1317 .3354 .1331 .0188 .0352 .3208 .12970010 .0053 .0056 .3121 .1476002400160014 .1330 .3752 .1334 .3152 .00550041 .3311 .1331 .0079 .0117 .1427 .3152 .1465 .0033 .005A .1474 .3197	
		30 • 0179 • 0190			30 -1317 -1390 -1474	
		0010 00010 0001			.0076 .0004 .0004	
		36 - 00011- - 00005-			38 •0079- •0016-	
		3.4 .0003.			3A -0067- -0024-	
		2f .0207. .0201.			2F -1520- 1476-	
		26 .0430 .0425			31 3167 3121 3152	
		20 20 30 30 30 30 30 30 30 30 30 30 30 30 30			20 •1382 •1354	
		2C 0014 .0004 .0016			2C 0102 -0026	
		28 .0003 .0014		A110N	28 -0025 -0053	
	- 60.	2A 0013 0001		007 d#	45 0099-	
ATA AT10N	ALPHA - 20.	16 20172 7710.	47 10. 10. 10. 10.	TA ATED T	166. 1297.	4E 4F •340 •1317 •3352 •1305 •3338 •1301
AP LOC		# 16 .0407 .0437	4E .0467 .0457	DON DA	F 1E .2994 .3208	4E .3440 .3352
HASF PRESSURE AND GARDON DATA PRESSURE AT INDICATED TAP LOCATION		10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	4A 4B 4C 4D 4E 4F 4F .00000000001300060180 .0467 .0179 .000400080001 .0182 .0456 .0178 .0456 .0178	HASF PRESSURE AND GARDON DATA PRESSURE COEFFICIENT AT INDICATED TAP LOCATION	2635 352	44 48 4C 4D .004400980046 .1329 .00290057004 .1336 .00070017 .0041 .1384
SSURE INDIC	-	.0009	0000 0000 0000 0000	SURE A	0067 0198 0198	7,000. -,0008
SURE AT	1 YPE 111	.0012 .0027 .0038	0013 0008	F PRES	.0089 .0201 .0279	48 0098 0057
PRES	_	.0011 .0025 .0035	4A 4B 4C 4D 4E 4F -0006-0000 0467 00179 -0006-0008 00182 0457 00179 -0001-0002 00006 00189 0456 00178	HAS	00.00.00.00.00.00.00.00.00.00.00.00.00.	**************************************
	RUN 27	6 - 6 6 - 6	6 - 6 6 - 6		6 th file 2 th co	o - ~
MTR 1365	ã	NG RATE NG RATE NG RATE	VG RATE VG RATE	305	46 RATE 46 RATE 16 RATE	IG RATE
<u>a</u>		HLOWING BLOWING BLOWING	BLOWING RATE HLOWING RATE HLOWING RATE	WTH 1365	HLOWING HLOWING HLOWING	BLOWING BLOWING BLOWING

*BAD GAGE

			46 1. u./f-03 1. /nt-04	4F 6-4-1E-03 5-11F-03 3-7-4F-03
			1,305-01 1,905-01 1,905-01 -3,745-05	
	4C • 02 • 02 • 03	45 643 642	2C 1.45f-03 1.45f-03	
	3C 15 0000	36 • 75 • 62 • 39	*	1F 9.75E-03 7.90E-03 6.09E-03
	27.55	16.03 18.03 53	48 5,78E-04 -3,78E-05	4E 1.18E-02 9.20F-03 6.43E-03
	00.00 00.00 01.00.00	16 10 13 13 15 17	38 34.94E-04 -1.84E-05-3	3F 1.27F-02 1 9.51F-03 9 6.39E-03 6
	3A 4B .04 .07 .01 0.00	3F 4E 1.51 1.40 1.16 1.13 .70 .71	28 28 4.446-04 4.446-05	
	9 1 0 9 1 0	26 1.99 1 1.32 1		1.866-02 1.1.086-02 1.5.656-03 1.
DATA DIN ALPHA = 20.	18 • 14 • 05	16 2.21 1.32 .62	MASF PRESSURE AND GARDON DATA STANTON NUMBER AT INDICATED TAP LOCATION A 2A 3A 4A 1AE-03 1.376E-04 1.39E-04 1.39E	4D 6.71E-03 1.8 3.66E-03 1.0 1.83E-03 5.6
PRESSURE AND GANDON DATA INDICATED TAP LOCATION 1111	4 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	04. 04. 00.	GARDON DA NDICATED 1 3A 1-04 1-45	
SURE AND Cated ta	3A 10.06 00.02	30 .52 .24	URE AND GAR! ER AT INDIC. 3A 3 1.19E-03 4 1.39E-04 6 1.39E-04	7.98
SF AT	28 1.09 0.09	20 1.14 .53	SF PRESSUITON NUMBE: 2A 1.39E-03 7.55E-04 3.55E-04	20 9.59E-03 4.32E-03 2.17E-03
на 1000	45. 45. 17.	* 0000	51 AN 51 AN 1.986-03 1.366-04	****
. 27	6 T T T	2 - 2 2 - 2	0-1	0 ~ 0
365 RUN	G RATE G RATE G RATE	S C KATE	SS HATE RATE RATE	RATE RATE RATE
MIR 1365	BLOWING MLOWING BLOWING	BLOWING BLOWING BLOWING	MIM 1365 BLOWING HATE	SLOWING RATE BLOWING RATE HLOWING RATE

*BAD GAGE

(6

BAD GAGE

		1C	1f 2f 3f 4f •61 .55 .64 .60 •34 .33 .47 .47		4A 1C 2C 3C	46 16 25 17 15 26 17 15 15 15 15 15 15 15 15 15 15 15 15 15
		3H 4B .05 .01 0.00 0.00 0.00 0	36 46 1.02 .77 1.81 .67		28 38 9.11F-04 6.25E-04 3.23E-05 5.22E-05 -2.29F-05 1.15E-05	7F 3F 9.25E-03 5.40F-03 6.85E-03 2.59F-03 4.65F-03
ON DATA	ALPHA - 10.	16 28 10 10 0:00 0:00	1	ED TAP LOCATION	4A 1.826-03 1.926-03 3.896-04 2.066-04 3.876-05 -1.946-05	40 1E 5.40E-03 6.43E-06 3.54E-03 2.66E-06 2.11E-03 3.04E-07
HASE PRESSUME AND GANDON DATA IT AT INDICATED TAP LOCATION	IVPF II	2A 3A 4A .20 .16 .14 .05 .05 .07 .05 .05	20 30 40 .59 .61 .60 .24 .35 .44	SF PRESSURE AND GAHOON DATA TON NUMBER AT INDICATED TAP LOCATION	2A 3A 1.65E-03 1.46F-03 4.60E-04 5.47E-04 1.84E-05 1.16E-04	20 30 5.30E-03 5.55E-03 2.00E-03 2.91E-03 4.96E-04 1.38E-03
MIR 1365 HASE QUOT AT	HUN ZB	BLOWING RATE 0 .29 HLUWING RATE 1 .10 FLUWING RATE 2 .02	ID BLOWING RATE 0 .63 BLOWING RATE 1 .14 HLOWING RATE 2 0.00	HASF STANTON	HUUWING RATE 0 2.666-03 BLOWING RATE 1 8.41E-04 GLOWING RATE 2 1.64E-04	HLOWING HATE U 5,66E-03 blowing rate 1 1,7F-03 rlowing rate 2 4,54E-06

*BAD GAGE

WTR 1365 HASF PRESCURE AT 1	HUN 29 TYPE II	1A 18 HLUWING RATE 0 .0014 .0015 . HLUWING RATE 1 .002h .00P8 . BLUWING RATE 2 .0044 .0041	44 48 HLOWING HATE 000070014 HLUWING RATE 1 .00000008 BLOWING HATE 2 .00050005	WIN 1365 HASF PRESSU	BLUWING RATE 0 .0100 .0106 . HLUWING HATE 1 .0182 .0198 . HLUWING HATE 2 .0311 .0293 .	HLOWING RATE 0004601010058 .1320 RLUWING RATE 1000200550006 .1326 RLOWING RATE 2 .00350033 .0014 .1333
HASF PRESSURF AND GARDON DATA PRESSUMF AT INDICATED TAP LOCATION	ALPHA + 20.	1C 1D 1F 2A 28 2C	4A 4B 4C 4D 4E 4F	HASF PRESSURE AND GARDON DATA PRESSURE COEFFICIENT AT INDICATED TAP LOCATION	1C 1D 1F 1F 2A 28 2C	4A 4B 4C 4D 4E 4F004~01910058 .1320 .3407 .131100500550006 .1326 .3346 .1313 .003h0033 .0014 .1333 .3382 .1327
		1A 1B 1C 1U 1E 1F 2A 2B 7C 2D 2E 7F 3A 3B 3C 3D 7F 3F 3D 3D 7F 3F 3D 3D 3F 3D			14 18 1C 1D 1F 1F 2A 28 2C 2D 2E 2F 3A 3B 3C 3D 3C 3D 4C 0.0100 0.0106 0.0091 0.0117 0.3076 0.0294 0.037.0096 0.0090 0.0293 0.02	

*BAD GAGE

• •	26 34 46 1C	2E 3E 4E 1F 1.87 1.56 1.27 1.20 1.56 1.37 1.14 .87 1.08 .99 .84 .50	NO 18 22	13 8.27f-04 7.29 15 2.46f-05 2.70 15 -5.07f-05 -4.98	# 16 26 36 46 46 31 31 46 46 3
ALPHA - 60.	44 11. 00. 10	**************************************	RESSURE AND GARDON DATA NUMBER AT INDICATED TAP LOCATION 2A 3A 4A 1	03 1.16E-03 04 4.41E-04 04 8.10F-05	30 40 7,38E-03 6,68E-03 1,1E
HUN 29 TYPE 11	BLUMING HATE 0 .24 .16 .15 HLUMING RATE 1 .09 .07 .08 HLUMING RATE 2 .02 .01 .03	IN 20 30 BLUWING RATE 0 1.17 1.09 .86 BLUWING RATE 2 .24 .40 .36	WIH 1365 HASF PRESSURE AN STANTON NUMBER AT	03 1-33E-03 04 5-50E-04 04 9-54E-05	10 20 10 20 10 10 20 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10

*BAD GAGE

18 1C 1D 1F 2A 0040009 .0365 .1090 .036500130 000 .0008 .0370 .1094 .038900060 016 .0026 .0392 .1138 .0405 .00040	48 4C 4U 4E 4F 0210011 .0361 .1049 .0353 0200010 .0366 .1064 .0363 0180006 .0384 .1116 .0381	RESSURE AND GARDON DATA COEFFICIENT AT INDICATED TAP LOCATIO	18 1C 1D 1E 1F 2A 0280066 .2597 .7747 .2735009201 038 .0053 .2575 .7614 .2709004201 110 .0175 .2632 .7639 .2718 .002501	4A 4B 4C 4D 4E 4F 006601510079 .2566 .7452 .2513 005101370068 .2547 .7486 .2555 000701190038 .2577 .7486 .2555
HLUMING RATE 000060009 HLUMING RATE 1 .0005 .0006 .0008 HLUMING RATE 2 .0019 .0016 .0026	4A 4B 4C BLUWING RATE 0000900210011 FLUWING RATE 1000700200010 BLUWING RATE 2000100180006	WTR 1365 HASF PRESSURE AN	1A 1B 1C BLUWING RATE 0004600280066 BLUWING RATE 1 .0032 .0038 .0053 BLUWING RATE 2 .0126 .0110 .0175	4A 4B 4C BLOWING RATE 0006601510079 BLOWING RATE 1000701190038
		0-0 0-0	o- n o- n	0-0 0-0

*BAD GAGE

					40 9.45 16 - 04 5.47 6 - 04 2.14 6 - 04	4F 9,46F-03 8,53F-03 7,03F-03
					1.26r-03 6.96r-04 3.12r-04	3F 1.15F-02 1.02F-02 8.2F-03
		,07 .03	4F 1.10 1.07 .41		2C 1.53E-03 5.66E-04 1.01E-04	2F 1.13E-U2 9.50E-03 7.39E-03
		3C • 15 • 04	36 1.33 1.28		1.546-03 3.996-04 1.516-05	16 1.736-02 1.466-02 1.146-02
		2C 118 01	76 10-31 10-19 10-19		48 4.46F-04 1.35E-05 -5.47F-05	4E 1.68F-02 1.55E-02
		10 114 000	16 2.01 1.83 1.31		34 5.39F-04 4. 4.RAF-06 1. -5.38F-05 -5.	3F 2.09F-02 1. 1.92E-02 1. 1.59E-02 1.
		3H 0.00	3f 2.43 2.40 1.82		2H 17.06F-04 3.02F-05 5-5.40F-05	2-51F-02 7 2-19F-02 1-78F-02
	ALPHA = 35.	26 0.00 1.03	2.92 2.73 2.05	CATION	18 1.00£-03 1.60£-05 -4.61£-05	16 2,48E-06 6,52E-07 7,77E-06
110N	ALPHA		* 0000	RESSURE AND GARDON DATA NUMBER AT INDICATED TAP LOCATION	4A 1.13E-03 5.57E-04 1.92E-04	40 9.60E-03 8.33E-03 6.64E-03
INDICATED TAP LOCATION		113	4D 1-12 1-04	PRESSURE AND GARDON DATA I NUMBER AT INDICATED TAP	3A 1.25E-03 1 7.69E-04 5 3.93E-04 1	30 30 8.44E-03 6.41E-03
DICATED	_	3A 115 010	30 1.61 1.05 1.05	SSURE AN		
OUOT AT: IN	TYPE II	2A -117 -104	20 1.40 1.14 .73	HASF PRE STANTON NU	⊸ 3 €	9.13
ã		14 119 103	10 1.94 1.46 .93	31,1	1 . 63E - 03 P. 04E - 04 7. 82E - 04	10 1.676-02 1.176-02 8.106-03
	RUN 10	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7 7		0 – 0.	⇒ ~ ≈ ⊌ ພ ພ
n G	₹	8 8 8 8 8 8	S KATE S RATE	ž	RATE RATE RATE	RATE RATE RATE
		BLOWING RATE ALUMING RATE BLOWING RATE	H CHING H CHING H CHING H CHING	WTK 1305	HL OW ING HLOW ING HLOW ING	HLOWING HLOWING HLOWING

*BAD GAGE

RAD GAG

D

MASE PRESSURE AND GANDON PATA QUOT AT INDICATED TAP LOCATION	TYPE 4 ALPHA - U.	2A 3A 4A 18 28 34 48 1C 2C 3C 4C 43 40 28 43 40 40 40 40 40 40 40 40 40 40 40 40 40	2D 3D 4U 1E 2t 3f 4t 1f 2f 3f 4f 8 35 44 4U 55 46 45 45 47 45 45 13 4 01 16 15 22 19 19 14 26 23 25 25 2 -13 03 04 06 06 07 07 07	HASF PRESSURE AND GARDON DATA Stanton number at indicated tap location	2A 3A 4A 1B 7B 38-64E-03 3.56E-03 3.44E-03 3.44E-03 3.71E-03 4.65E-03 4.45E-03 3.84C-03 3.84C-04 3.84C-04 3.84C-04 5.35C-04 3.84C-04 3.84C-04 5.35C-04 3.84C-04 3.84C-04 3.84C-04 5.84C-04 3.84C-04 3.84C-04 5.84C-04 5.84C-04 3.84C-04 5.84C-04 5.84C	2D 3D 40 1E 7E 3F 4E 1F 2F 3F 4F 3F 4F 3F 2F 1S 4F 3F 2F 1S 4F 1SF 03 3.81F 03 4.30F 03 4.09E 03 4.31F 03 3.77E
29F1 01M	FUN 31	HLUWING RATE 0 .47 HLUWING RATE 1 .28 HLUWING RATE 2 .11	BLOWING RATE 0 .48 BLOWING RATE 1 .14 BLOWING RATE 2 .02	2 X 1365	1A HLOWING RATE 0 4,28E-03 HLOWING RATE 1 2,40E-03 HLOWING RATE 2 9,88E-04	HEUWING RATE 0 4,40E-03 HEUWING RATE 1 1,20E-03 HEUWING DATE 2 2 00E-03

*BAD GAGE

BAD GAG

•

5051 din	000	•	SF PRESSURE AND GARDON DATA AT INDICATED TAP LOCATION	CATION								
RUN 32		TYPE 4		ALPHA	. 10.							
HLUWING RATE O HLUWING RATE I	14 .28 .17	2A . 25 . 16 . 06	3A .23 .14	4A 18 .21 .13 .14 .02 .07 0.00	25 0.00 0.00	3H • 0 H 0 • 00	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10 20 .36 .32 .14 .13	×.74			
BLOWING MATE O BLOWING RATE I BLOWING RATE 2	10 .97 .60 .29	20 .65 .27 .07	30 77 .56 .32	40 16 64 1.42 50 1.13	2.5. 1.23 3.49 4.64	3f 1-14 -97 -65	74. 20.1 20.4 1.4.	75 26 99 94 94 94 94 94 94 94 94 94 94 94 94	76 • • • • • • • • • • • • • • • • • • •	44. 85. 85.		
ufk 1365	HAS	ISF PRESSUR ITON NUMBER	HASF PRESSURE AND GARDON DATA ANTON NUMBER AT INDICATED TAP 12 OCATION	ON DATA TED TAP LL	CATION							
+ OPTING RATE O SECULORING RATE 1 SECULORING RATE 2	1A 2.49E-03 1.44E-03 6.47E-04	2A 2.24E-03 1.33E-03 6.13E-04	3A 2.016-03 1.226-03 6.426-04	4A 1.85E-03 1.17t-03 6.32t-04	1. 136-03 1.486-04 -1.10E-05	2H 9.27F-04 1.07F-04	34 6.456-04 9.426-05 2.016-05	48 6.21E-04 8.25F-05 2.04E-06	1C 3.17E-03 1.17E-03 3.27E-04	26. 2.45f-03 1.17t-03 3.49f-04	76 2.46F-03 1.10F-03 4.16F-04	46 2.146-01 1.016-01 4.446-04
BLOWING RATE O HLOWING RATE 1 HLOWING RATE 2	10 A.61E-03 5.0ME-03 2.80E-03	20 5.75E-03 2.27E-03 -6.36E-04	3D 6.83E-03 4.75E-03 3.09E-03	40 6.12E-03 4.23t-03 2.76E-03	16 1.276-02 9.576-03 6.866-03	2F 1.0×F-02 8.41F-03 6.04F-03	3F 1.02F-02 H.24F-03 6.23E-03	4E 9.72F-03 7.67E-03 5.73E-03	1F 8.49E-03 6.23F-03 4.38E-03	2F 7.40E-03 5.18E-03 3.78E-03	7F 6.89F-03 5.35F-03	4F 5. HSF - 03 4. P. P. F - 03 3. 3. P. F - 03

*BAD GAGE

SAD GAG

					4C 10-446-03 7-916-04 4-746-04	46 7.476-03 7.076-03 5.06-03
					36 1.696-03 9.341-04 4.591-04	7r 9.46r-03 6.30r-03 6.79r-03
		11. 10. 20.	7. 6. 6. 6.		2C 2-10F-03 1-07E-03 4-85E-04	2F 9.A1E-03 6.71F-03 6.56F-03
		2. 4. 0. 4. 0. 4. 6.	3f 1.12 1.05		1C 2.60E-03 1.28F-03 5.71E-04	16.116-02 9.506-03 7.656-03
MASF PRESSURE AND GANDON DATA QUOT AT INDICATED TAP LOCATION	۶۵۰	20 25 14 05	1.16		48 4.75E-04 4.79F-05	4£ 1.53E-02 1.40E-02
		46 1C • 05 • 31 • 01 • 16	46 1F • 62 1•32 • 77 1•20 • 28 • 85		38 6.43F-04 6.41E-05 -4.95E-06	3F 1.64F-02 1.23F-02
		3H • 06 • 01 0 00	3F 1.94 1.888 1.37 1.		28 6.446-04 6.865-05 -2.746-05 -4	2F 1.73F-02 1. 1.53F-02 1. 1.24F-02 1.
		28 • 08 • 01 • 00	26 2.06 1.96 1.39	NO.	18 8,206-04 6, 9,896-05 6,	16 1.956-02 1.726-02 1.406-02
	ALPHA - 20.	18 • 10 • 00	1E 2.32 2.17 1.56	DATA TAP LOCA	4A 1.27E-03 P. B.78E-04 9 5.35E-04 -1	40 8.26E-03 1. 6.76E-03 1. 5.17E-03 1.
		3A 4A 16 .15 12 .11	30 40 1.10 .96 .96 .86 .65 .58	PRESSURE AND GAKDON DATA I NUMBER AT INDICATED TAP LOCATION	3A 1.37E-03 1. 9.13E-04 B. 5.62E-04 5.	30 9.29E-03 B. 7.63E-03 6. 5.83E-03 5.
	TYPE 4	2A .20 .144	000 600 600 600 600	3.	2A 1.68E-03 1. 1.14E-03 9. 7.11E-04 5.	20 3E-03 3E-03 2E-04
	F	18 18 10	10 1.03 1.03	HASF	1A 7.05E-03 1 1.39E-03 1 8.80E-04 7	1.08E-02 7.0 8.16E-03 3.6 5.77E-03 6.9
uTp 1365	RUN 33	HLOWING RATE O HLOWING RATE 1 HLOWING NATE 2	BLOWING HATE O BLOWING HATE I HLOWING RATE 2	WIH 1365	HLUNING RATE D 2 HLUNING RATE 1 1 BLUNING RATE 2 R	BLOWING RATE U 1. HLOWING RATE 2 S.

*BAD GAGE

HASF PRESSURE AND GARDON DATA PRESSURF AT INDICATED TAP LOCATION		1A 1B 1C 1D 1E 1	TE 0000500180001 .0403 .1070 .03/4 TE 1 .00020009 .0009 .0417 .1088 .0379 TE 2 .00020008 .0431 .1129 .0397	HASF PRESSURE AND GAMDON DATA PRESSUHE COEFFICIENT AT INDICATED TAP LOCATION	1A 18 1C 1D 1E 1F 2A 2B 2C 2D 2E 2F 3A 3B 7C 3D 7F 3F 3F 3B 7C 3D 7F 3F 3F 3F 3B 7C 3D 7F 3F	AA 48 4C 4D 4E 4F RATE 0003401350069 .3063 .7981 .2792 RATE 1 .00160064 .3053 .7965 .2777
wfp 1365	RUN 34	HLOWING MATE O BLOWING RATE 1 HLOWING RATE 2	BLOWING RATE O BLOWING RATE 1 BLOWING RATE 2	WIH 1365	BLOWING RATE O BLOWING RATE 1 BLOWING MATE 2	BLOWING RATE O BLOWING RATE I

*BAD GAG

				40 1-346-03 8.506-04	46 1 - 136 - 02 1 - 00 6 - 03 8 - 466 - 03
				1.60:-03 9.55r-04 5.05r-04	1,325-02 1,235-02 1,055-02
	21. 21. 20. 30.	4F 1,22 1,24 1,24		2c 1.996-u3 1.146-03 5.73E-04	2f 1.36E-02 1.22E-02 1.04E-02
	30.	34. 1.44. 1.1.		1C 2-39E-03 1-28E-03 6-20E-04	1586-02 1.446-02 1.236-02
	22. 22. 13.	74 1.48 1.10		48 4.43E-04 3.25E-05 -2.43E-05	4E 2-43F-02 2-31E-02 1-96E-02
	10 28 15 15	15. 1.71 1.69 1.31			
	48 0.00 0.00 0.00	2.08 2.08		38 3.50f-05 3.50f-05 -2.21f-05	3E 2.54F-02 2.42F-02 2.0AF-02
	36 0.00 0.00	3F 2.76 2.83 2.20		28 5.976-04 3.476-05 -3.376-05	2.64£-02 2.46F-02 2.06F-02
. 35.	90000	26 2.85 2.87 2.18	AT 10N	4 6 6 6 8	16 2,946-02 2,806-02 2,406-02
ALPHA -	6.00	16 3.23 3.28 2.54 2.54	PRESSURE AND GAMDON DATA I NUMBER AT INDICATED TAP LOCATION	4A 1.23E-03 9.19E-04 6.08E-04	40 1-136-02 9-946-03 6-136-03
5	** 113 00	40 1.22 1.16 .86	KDON D		
W	3A 115 107	30 1.37 1.29 .95	E AND GA	3A 1.346-03 9.626-04 6.376-04	3D 1.26E-02 1.11E-02 9.00E-03
نطا	2A 116 08	20 1.06 33	SF PRESSUR FON NUMBER	2A 1.64E-03 1.18E-03 7.74E-04	20 9.76£-03 6.82E-03 3.07E-03
I AAI	A1	10 1.62 1.01	HASE	1,986-03 1,456-03 9,946-04	10 1.506-02 1.246-02 9.546-03
RUN 34	11E 0	1E 0 1E 1		0-1	0 - 0
\$	* 5 5 5 * * * * * * * *	3 6 3 4 4 4 4 4 4	5	RATE	RATE
	ALUWING RATE BLOWING RATE BLOWING RATE	BLUMING RATE BLUMING RATE PLUMING RATE	WIN 1365	BLOWING RATE BLOWING RATE BLOWING RATE	BLOWING RATE BLOWING RATE HLOWING RATE

*BAD GAGE

DISTRIBUTION

Director Strategic Systems Project Office Attn: SP-2722 Department of the Navy	<u>opies</u> 5	Internal Distribution: K24 (M. Roberts) E35 E431	<u>Copies</u> 25 1 9
Washington, D.C. 20390 Defense Technical Information Center Cameron Station Alexandria, VA 22314	r 12	E432	3
Lockheed Missiles and Space Co. Attn: G. T. Chrusciel R. Nelson C. Louis W. Colman C. Lee L. Hull J. Mandeville P. O. Box 504 Sunnyvale, CA 94806	1 1 1 1 1 1		
Lockheed Missiles and Space Co. Attn: Technical Information Center Center 3251 Hanover St. Palo Alto, CA 94304	1		
Kaman Sciences Corp. Attn: Library Mr. F. Barbera Mr. P. Wells Mr. D. Foxwell Mr. J. Forkois 1500 Garden of the Gods Road Colorado Springs, CO 80907	1 1 1 1		
Library of Congress Attn: Gift and Exchange Division Washington, DC 20540	4		